Infrastructure Asset Management with Uncertain Data

ben.ward@aecom.com

6

10

6.6

Objectives & background

Analytics Techniques

		DESCRIPTIVE	PREDICTIVE	PRESCRIPTIVE		
Business Requirements	STRATEGIC	What happened to our assets in the last 10yrs?	What will happen to our assets in the next 25yrs?	What future investments do we need to make on our assets?		
	TACTICAL	What happened to our assets in the last year?	What will happen to our assets in the next year?	What assets do we need to replace or maintain this year?		
	OPERATIONAL	What is happening to our assets today?	What will happen to our assets tomorrow?	What assets do we need to inspect or maintain tomorrow?		

AECOM

Are we optimising our investment for communication pipes?

- Less than 80% of assets are mapped*
- Less than 90% of assets have known material or age*

I'll set aside the same money as last year & let operations decide

UK estimate from research

AECOM

- 1. Build an asset stock
- 2. Deterioration modelling & whole life cycle analysis
- 3. Optimise maintenance & investment policies

1a. Asset mapping

1b. Asset age

- i. Corporate GIS
- ii. UK Gov. Valuation Office Agency postcode age data
- iii. Digitised historic map boundaries

AECOM

1c. Asset material

- i. Corporate GIS
- ii. Maintenance records
- iii. Elicitation

Date range	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	
<1945	GI	Pb	Pb	GI	Pb	Pb	Pb	GI	
1945 – 49	Cu	Cu	Cu	Cu	Cu	GI	Pb	GI	
1950 – 55	Cu	BPE	Cu	Cu	Cu	GI	Pb	GI	
1956 - 63	BPE	BPE	Cu	Cu	Cu	GI	Pb	Cu	
1964 – 84	BPE	BPE	BPE	BPE	Cu	Cu	BPE	BPE	AECOM
>1985	MDPE								

2. Life cycle model

AECOM

2b. Model calibration & verification

2a. Deterioration curves

3. Results – AMP6 Expenditure

Pb comparison

Age at failure

X<41 ▲41-60 ●61-80 ●81-100

101-120 + 121-140 ->140

Modelled Company 1

