
 

 

 

Detection and Localisation of Pipe Bursts 

in a District Metered Area Using an Online 

Hydraulic Model 

 

Submitted by Olanrewaju Isaac Okeya  

to the University of Exeter as a thesis for the degree of 

Doctor of Engineering in Water Engineering 

March 2018 

 

This thesis is available for library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been identified 

and that no material has previously been submitted and approved for the award of a 

degree by this or any other University. 

 

Signature: ............................................... 



2 

 

This page is intentionally left blank   



3 

 

ABSTRACT 

 

This thesis presents a research work on the development of new methodology for near-

real-time detection and localisation of pipe bursts in a Water Distribution System 

(WDS) at the District Meters Area (DMA) level. The methodology makes use of online 

hydraulic model coupled with a demand forecasting methodology and several 

statistical techniques to process the hydraulic meters data (i.e., flows and pressures) 

coming from the field at regular time intervals (i.e. every 15 minutes). Once the 

detection part of the methodology identifies a potential burst occurrence in a system it 

raises an alarm. This is followed by the application of the burst localisation 

methodology to approximately locate the event within the District Metered Area (DMA).   

 

The online hydraulic model is based on data assimilation methodology coupled with a 

short-term Water Demand Forecasting Model (WDFM) based on Multi-Linear 

Regression. Three data assimilation methods were tested in the thesis, namely the 

iterative Kalman Filter method, the Ensemble Kalman Filter method and the Particle 

Filter method. The iterative Kalman Filter (i-KF) method was eventually chosen for the 

online hydraulic model based on the best overall trade-off between water system state 

prediction accuracy and computational efficiency.  

 

The online hydraulic model created this way was coupled with the Statistical Process 

Control (SPC) technique and a newly developed burst detection metric based on the 

moving average residuals between the predicted and observed hydraulic states 

(flows/pressures). Two new SPC-based charts with associated generic set of control 

rules for analysing burst detection metric values over consecutive time steps were 

introduced to raise burst alarms in a reliable and timely fashion. The SPC rules and 

relevant thresholds were determined offline by performing appropriate statistical 

analysis of residuals. 

 

The above was followed by the development of the new methodology for online burst 

localisation. The methodology integrates the information on burst detection metric 

values obtained during the detection stage with the new sensitivity matrix developed 

offline and hydraulic model runs used to simulate potential bursts to identify the most 
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likely burst location in the pipe network. A new data algorithm for estimating the 

ónormalô DMA demand and burst flow during the burst period is developed and used 

for localisation. A new data algorithm for statistical analysis of flow and pressure data 

was also developed and used to determine the approximate burst area by producing a 

list of top ten suspected burst location nodes. 

 

The above novel methodologies for burst detection and localisation were applied to 

two real-life District Metred Areas in the United Kingdom (UK) with artificially generated 

flow and pressure observations and assumed bursts. The results obtained this way 

show that the developed methodology detects pipe bursts in a reliable and timely 

fashion, provides good estimate of a burst flow and accurately approximately locates 

the burst within a DMA. In addition, the results obtained show the potential of the 

methodology described here for online burst detection and localisation in assisting 

Water Companies (WCs) to conserve water, save energy and money. It can also 

enhance the UK WCsô profile customer satisfaction, improve operational efficiency and 

improve the OFWATôs Service Incentive Mechanism (SIM) scores.  
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1 INTRODUCTION 

1.1 MOTIVATION 

 

Accessible potable water is one of the critical essentials to human survival and 

economic growth of todayôs society. In most of the developed countries, the water from 

the environment is treated to meet the drinking water standards and then supplied to 

the domestic, retail and industrial users. Majority of the potable water is mostly used 

for toilet flushing, washing, irrigation and industrial uses. However, majority of people 

in this world who do not have sufficient access to potable water but use poor quality 

water instead. Therefore, many governments especially in developing countries want 

their populace to have access to potable water which is causing a rapid expansion of 

water networks. Such expansion of new water networks will put pressure on existing 

Water Distribution Systems (WDS) infrastructure and limited water resources. The 

rapid population growth (increasing water demand) and climate change due to the 

global warming will put further pressure on the current WDS infrastructure and water 

resources. It is also evident that water supply is an ongoing critical issue for the future 

generations in both urban and rural areas. The Water Services Regulation Authority 

(OFWAT) 2011 report highlights additional challenges that the United Kingdom (UK) 

Water Companies (WCs) face for the next 25 years and they are as follows (OFWAT, 

2011): 

1. Consumersô high expectation of water services due to high standards of living. 

2. Stringent environmental regulations limiting the amount of raw water that can 

be abstracted from boreholes and rivers due to climate change and 

Environmental Agency (EA) aquatic ecosystems protection. 

3. High percentage of water losses via unexpected pipe bursts and leaks due to 

aging water infrastructure. 

 

The WCs all over the world face the choice to either build more resources (i.e. water 

storages, water networks, water treatments) now or improve the existing management 

of WDS. The construction cost of building the new resources (i.e. water storages, water 

network, water treatments) has risen over the last decade. The opportunity to develop 

sustainable and viable water resources is also limited due to climate change and 
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budget constraint. Many WCs in the world aim to maximise their current WDS and 

focus on water conservation efforts. It is widely claimed that the amount of water loss 

from the WDS ranging between 20% and 40% (Environment Agency, et al., 2012). 

Thus, the reduction of water loss is a pressing priority for the WCs all over the world. 

Even though, the WCs in the world are actively rehabilitating and maintaining the WDS 

infrastructure, but the abnormal events (i.e., pipe bursts/leaks) still persist. These 

abnormal events occurred due to the ageing WDS infrastructure, pipe crack and loose 

joints due to poor workmanship. It is pertinent to mention that due to the stochastic 

nature of the pipe bursts, it is almost impossible to predict the future burst events and 

their possible locations. The potential solution to reduce water loss is via early 

detection and location of bursts in near real-time. The development of a real-time 

tool/system that can perform such detection and location analysis is paramount.  

 

The potential benefits of implementing a near real-time pipe burst detection and 

localisation methodology are as follows: 1) managing the WDS efficiently under 

abnormal events to prevent serious damages or long interruptions in service (Bicik, et 

al., 2009) and 2) it can result in significant financial savings for the UK WCs (Romano, 

et al., 2013). The financial savings can be the result of following reasons; (i) reducing 

the associated costs of the water lossô production (i.e., chemical) and distribution (i.e., 

pumping); (ii) reducing the operational costs of detecting and locating pipe burst; (iii) 

reducing associated costs of compensating affected local businesses due to pipe 

bursts; (iv) limiting compensation payments for the damaged infrastructures and 

properties due to pipe bursts; and (v) avoiding OFWATôs penalties due to the poor 

OFWATôs serviceability scores.  

 

The UK WCs recognise the aforementioned potential benefits which inspire them to 

invest in real-time management of WDS research including this research work. The 

UK WCs have a commitment of reducing carbon footprint, minimising the number of 

interruptions to water supply, promoting water conservation and reforming their 

management of Supervisory Control and Data Acquisition (SCADA) system to attain 

better sustainability of WDS. These UK WCs commitments are appreciated by the 

public and national water regulatory bodies (i.e., OFWAT). This can further enhance 
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the UK WCsô profile customer satisfaction and limit the OFWATôs Service Incentive 

Mechanism (SIM) scores.  

 

1.2 BACKGROUND 

 

There are many pipe burst detection and localisation techniques developed on different 

principles (Puust, et al., 2010). Majority of the techniques are developed without the 

consideration of detecting and locating pipe bursts online.  The UK WCs are already 

started to install multiple permanent hydraulic meters (i.e., flow meters and pressure 

meters) to monitor WDSs. The data gathered from the multiple hydraulic meters at 

different observation locations can be assessed with hydraulic model to provide WDSs 

condition status (i.e., normal, abnormal). The changes in WDS sections configuration 

are due to various factors such as WDS boundary modification, pressure optimisation 

scheme and addition of new properties layout. These changes can affect the 

performance of the existing pipe burst detection and localisation techniques. A new 

and more efficient technique for the online detection and location of pipe burst events 

in WDSs is required. 

 

Detecting and locating pipe bursts in WDS sections (in real-time) remains a huge 

challenge for many UK WCs. Many UK WCs have implemented pipe burst detection 

systems (Mounce et al., 2010; Romano et al., 2013). The developed pipe burst 

detection techniques are capable of detecting bursts in real-time but they can become 

redundant if there is a WDS boundary change (i.e., valve closure, DMA configuration 

change). Currently, vast majority of the pipe bursts detection still depends on customer 

contacts. Consequently, the UK WCs and some interested water researchers shift their 

research focus to utilising online hydraulic modelling of WDSs for pipe burst detection 

and localisation. This represents an opportunity for application of statistical techniques 

and model-data driven pipe burst detection and localisation methods, which at the 

same time have to cope with a large number of data and complex WDS configuration. 

The early detection and location of pipe bursts in real-time can be achieved by using 

the method proposed in this thesis. Such early detection and localisation of pipe bursts 

can improve the lead time for burst repair and manage the WDS effectively under 

abnormal conditions.  
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The burst detection and localisation techniques that make use of hydraulic model to 

solve the pipe burst detection and location problem by statistical analysis. These 

techniques have recently started to appear (e.g., Skworcow and Ulanicki, 2011; Jung 

and Lansey, 2013; Kang and Lansey, 2014) mainly due to the aspiration of the WCs 

to make use of a hydraulic model and data (i.e., flows and pressures) from multiple 

hydraulic meters via SCADA systems.  

 

Hydraulic model is usually used to predict flows and pressures based on the 

assumptions of a fixed water demand patterns, estimated flow rates, pump scheduling 

and tank or reservoir elevation (Machell, et al., 2010). A calibrated offline hydraulic 

model is often used to predict the WDSs hydraulic states or status (i.e., abnormal 

status due to low pressure, pipe bursts). It is well established that both hydraulic model 

and observations (i.e., flows, pressures) can be error-prone (Shang, et al., 2006). 

Therefore, an online hydraulic modelling of WDSs is required to reduce such hydraulic 

model and observationsô error via Data Assimilation (DA) method.  

 

Hutton, et al., (2012), Hatchett et al., (2009) and Shang et al, (2006) highlight many 

developed DA methods are already applied in hydraulic modelling but they are now 

being experimented for operational level due to the data scarcity. The operational 

hydraulic modelling of WDSs is still at the preliminary stages in the UK WCs (Bicik, et 

al., 2009) because of high computational inefficiency for a large WDS (Shang, et al., 

2006; Pauwels & De Lannoy, 2009);  hydraulic data quality; complexity of the WDS 

configuration (Preis, et al., 2011); limited number of hydraulic meters (Romano, et al., 

2013) due to budget constraint; hydraulic model inaccuracy due to incomplete and 

inaccurate data stored in Geographic Information System (GIS) database. Some of the 

abovementioned limitations can be overcome as the WDS technologies advance or 

become cheaper over time.   

 

The combination of the following components: hydraulic data (i.e., flows/pressures) 

and model, a DA method and statistical techniques seems to be a promising 

combination to observe WDS online. The combination of an online hydraulic and DA 

method and statistical techniques presents several advantages over other numerical 

techniques such as: the transient analysis-based (e.g., Kapelan et al., 2003); steady 
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state analysis-based (e.g., Wu et al., 2010); negative pressure wave-based (e.g., 

Srirangarajan et al., 2012) and measurement-based statistical/ Artificial Intelligent (AI)-

based techniques (e.g., Mounce et al., 2010, 2011; Romano et al., 2012, 2013). For 

example, model-based burst detection and localisation techniques can still be used if 

the WDS boundary changes compared to the measurement-based statistical and/or 

AI-based techniques. Low frequency (e.g., 15 minutes) of hydraulic data is good 

enough for data analysis compared to the transient analysis-based or negative 

pressure wave-based method. The model-based burst detection and localisation 

techniques combined with a DA method and statistical techniques can be improved to 

detect and locate pipe bursts in a timely and reliable manner. In addition, there is no 

online model-based burst detection and localisation techniques that utilise a DA 

method and statistical techniques to detect pipe bursts and pinpoint the burst area 

within a DMA online. They are mostly tested on limited number of artificial bursts 

generated via a hydraulic model. This research work discusses the development, 

implementation and application of a model-based pipe burst detection and localisation 

technique to detect and locate pipe burst in real-time. The work presented in this thesis 

is, therefore, relevant for the water industry and has the potential to assist WCsô 

leakage team. 

 

1.3 THESIS SCOPE AND OBJECTIVES 

 

The overall objective of this thesis is to develop and test and also demonstrate an 

online hydraulic model-based burst detection and localisation methodology for 

detecting and locating pipe bursts in WDS sections in real-time.  

 

The following research questions are asked to achieve the aforementioned thesis 

objective. 

1. What are the current capabilities and limitations of (1) developed burst detection 

and localisation methodologies and (2) data assimilation methods in the 

literature?  

2. Do online hydraulic models (with a data assimilation) improve WDS prediction 

accuracy when compared to existing offline WDS model?  
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3. If yes to the above question 2, which online hydraulic models perform 

reasonably well? 

4. Can an AI and/or statistical technique complement the selected online hydraulic 

model to detect and locate WDS pipe bursts in WDS? 

5. How do the proposed burst detection and localisation methods fare on both 

artificial/real-life case study and flow/pressure data? 

6. What are the key findings from the case studies? 

 

The aforementioned research questions are answered in this thesis through the 

following specific objectives:  

1. To review relevant literature on burst detection and localisation methods 

including their capabilities and limitations and also review relevant data 

assimilation methods and their practicality in WDS. This is to identify the 

knowledge gap in the literature; 

2. To investigate and develop an online hydraulic model(s) to be used for WDS 

state estimation in near real-time with the aim to obtain improved prediction 

accuracy when compared to an offline WDS model. An integral part of this work 

is the development of a simple water demand forecasting model to forecast 

water demands every 15 minutes. Online hydraulic model is a combination of a 

hydraulic model, demand forecasting model and a DA method (i.e., Kalman 

Filter method, Ensemble Kalman Filter method and Particle Fitter method);  

3. To compare performances of alternative online hydraulic models and to decide 

which online hydraulic model to take forward for the development of burst 

detection and location methods; 

4. To find effective statistical techniques to detect and locate pipe burst using to 

forecast water demands, correct hydraulic model predictions and detect and 

locate pipe bursts. This involves utilising online hydraulic model (from step 

above step 3) and investigating the detection metrics, Statistical Process 

Control (SPC) Rules to detect pipe bursts and ultimately used to raise detection 

alarms. Then develop a statistical analysis-based process  that make use of 

offline sensitivity matrix, flow/pressure meters data to approximate the burst flow 

and area in real-time; 
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5. To test and demonstrate the robustness the proposed detection and localisation 

methodology in real time when applied on a number of different real-life UK 

DMAs with both artificial and real-life flow/pressure data; 

6. To review the robustness of the proposed burst detection and localisation 

methodology in two case studies (two different WDS sections' configuration) 

including the computational cost to detect and locate pipe bursts.  

 

1.4 THESIS STRUCTURE 

 

This thesis is divided into seven chapters including this introduction. 

 

In Chapter 2, a review of the relevant literature is provided. The review covers key 

areas of pipe burst detection and localisation techniques for detecting and locating pipe 

bursts in WDSs. It also highlights their individual advantages and disadvantages. The 

reviewed techniques are mainly hydraulic techniques which make use of hydraulic data 

and/or hydraulic model. Data Assimilation (DA) methodologies are also reviewed. A 

comparison of DA methods is presented. 

 

In Chapter 3, the concept behind the data assimilation method and their variants are 

described. The integration of a demand forecasting model, a data assimilation method 

and hydraulic model to make an online hydraulic model is explained.  

 

In Chapter 4, the results of case studies for offline and online hydraulic modelling are 

presented. The key performances between the selected online hydraulic models are 

highlighted including computational cost and flow/pressure correction/prediction 

statistics. The chapter concludes with selecting an online hydraulic model for the 

development of burst detection and location methods.  

 

In Chapter 5, first the overall methodology for online pipe burst detection and 

localisation methodology is introduced and its individual constituents are described. 

The development of water demand forecasting model based on multi-linear regression 

analysis is described. The formulation of an online hydraulic model is explained. 

Suitable models to detect pipe bursts and approximate burst area in WDSs are then 
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presented. This chapter also presents the development of control rules for generating 

burst alarm and the details of developed technique for estimating burst flow and 

pinpointing burst nodes in the methodology. 

 

In Chapter 6, a number of case studies to illustrate the proposed burst detection and 

localisation methodologies are presented. First, the pipe burst detection capabilities of 

the developed methodology that makes use of artificial hydraulic data from observation 

locations in one real-life UK DMA are tested and demonstrated. The artificial flow and 

pressure data are generated via hydraulic model based on the real-life inflow and 

outflow data. The performances of the developed methodology based on different 

number of hydraulic meters from different observation locations are reviewed. Then 

the performance of the detection methodology is tested and reviewed on a real-life 

DMA and real life hydraulic data (mostly pressure data). Second, the pipe burst 

localisation capabilities of the developed methodology within a DMA using hydraulic 

model, statistical techniques and artificial hydraulic data (via hydraulic model) is 

illustrated on a set of artificial burst locations in one real life DMA. The performance of 

the burst localisation methodology on a real-life DMA and real life hydraulic data 

(mostly pressure data) is also reviewed.   

 

In Chapter 7, the key findings of this thesis are summarised, general conclusions are 

made and directions for the future work 

 

Appendices are included at the end of the thesis. 

 

 

 

  



32 

 

2 LITERATURE REVIEW 

 

This chapter provides a review of literature relevant to pipe burst detection and 

localisation techniques with focus on near real-time methodologies. Literature dealing 

with data assimilation methodologies are also reviewed to establish grounds for 

development of an online hydraulic modelling of WDS. The aforementioned techniques 

are reviewed to establish a context for the methodology presented in this thesis. 

 

The chapter is organised as follows:  

ǒ Section 2.1 reviews the available burst detection and localisation techniques 

that have been applied to WDS including their capabilities; 

ǒ Section 2.2 reviews DA methodsô capabilities and limitations including their 

implementation in WDS hydraulic modelling; 

ǒ Section 2.3 provided a summary of the literature review is including the main 

conclusions and research gaps. 

 

In the WDS-related literature, the following terminologies Water Supply System (WSS), 

Water Supply Network (WSN), Water Distribution System (WDS) and Water 

Distribution Network (WDN) are often used interchangeably. Hence it is pertinent to 

define the abovementioned terminologies here. 

¶ Water Supply System (WSS) or Water Supply Network (WSN) is an 

infrastructure for the collection, transmission, treatment, storage, and 

distribution of water for domestic (homes) use, commercial and industry use and 

also irrigation use, firefighting use and street flushing use. 

¶ Water Distribution System (WDS) or Water Distribution Network (WDN) is an 

infrastructure for the distribution of treated water to the point of consumption 

(potable water). 

 

In this thesis, WDS is used to represent WSS/WSN/WDN. Other terminologies that 

have been used interchangeably are pipe burst and pipe leak. Pipe burst and pipe leak 

are defined as follows: 

¶ Pipe burst is an unrecoverable water loss to the environment while interrupting 

water supply to water customers.  
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¶ Pipe leak is an unrecoverable water loss to the environment without interrupting 

water supply to water customers. 

 

However, in this thesis, pipe burst or pipe leak is defined as unrecoverable and 

unplanned water loss to the environment from the WDS pipes including pipe fittings. 

 

2.1 BURST DETECTION AND LOCALISATION METHODOLOGIES 

2.1.1 Introduction  

 

The detection and location of WDS pipe bursts/leaks are important to WCs around the 

world due to its opportunity to conserve raw/treated water and save associated cost. 

The detection and localisation of pipe bursts/leaks in a WDS section (i.e., District 

Metered Areas (DMAs)) still remains a challenging task due to the stochastic nature of 

a WDS section. The increasingly frequent installation of plastic pipes nowadays 

(especially poly-ethylene pipes) in DMAs makes it difficult for some hardware-based 

techniques (i.e., acoustic equipment-based) to locate pipe bursts (Romano et al., 2013; 

Bicik et al., 2010). Even though the hardware-based techniques have improved (Puust 

et al., 2010) but they are costly, labour-intensive, and slow to run. Given this and the 

fact this thesis aims to develop a numerical model pipe burst detection and location, 

the literature review on hardware-based techniques is not considered here. However, 

the information on hardware-based techniques can be found in Li et al. (2015). 

 

Misiunas (2005), Bicik (2010) and Romano (2012) in their PhD theses provided an 

intensive review of burst detection and location techniques in pipelines and pipe 

networks. A broad range of methods was considered by the authors, including 

traditional techniques for burst/leak detection and location, such as flow mass balance 

(also known as water audits), transient-based method, acoustic logging, ground 

penetrating radars, tracer gas-based technique and step-tests method.  

 

This section only covers the hydraulic techniques developed to detect and locate 

bursts/leaks since the contribution of this thesis lies in the combination of a statistical 

based technique, a data assimilation method and hydraulic model. Hydraulic 
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techniques make use of hydraulic data (i.e., flow and pressure data) to review the WDS 

status (i.e., normal ï no burst or abnormal - burst). Many of the hydraulic techniques 

are currently in stage of research and development or applied in a small section of 

WDS or simple hydraulic model with various successes. The capabilities and 

limitations of each hydraulic technique are reviewed for real-time burst detection and 

localisation in a WDS section.  

 

The reviewed hydraulic techniques can be categorised into two groups namely: 

ǒ Data-driven (i.e. data analytics type) techniques; 

ǒ Hydraulic model-based techniques; 

 

The above techniques are reviewed in Section 2.2.2 and 2.2.3 respectively and then 

summarised in Section 2.2.4.  

 

2.1.2 Data-Driven Techniques 

 

The data-based techniques analyse the meters signalsô values from a SCADA system 

in near real-time to detect abnormal flows or pressures. These techniques do not make 

use of hydraulic model, i.e. physically based models to estimate hydraulic states (flow 

or pressure) of a WDS. Data-driven techniques make use of statistical or similar 

analysis of hydraulic/other data to extract meaningful information concerning the WDS. 

Some data-driven techniques make use of sophisticated techniques such as AI 

(Russell and Norvig, 2009; Holland, 1975) and Statistical Analysis (SA) methods 

(Atkinson et al., 2007; Nelder, 1990).  These AI/SA techniques are employed to 

improve the reliability of pipe burst detection and localisation.  

 

It is well established that an abnormal event such as burst increases the flow rate and 

decreases the pressure upstream of the burst/leak. Therefore, the flow meters and 

pressure meters located at the upstream of the burst/leak or burst are affected. These 

changes in flow/pressure are normally used to identify the burst/leak occurrence.  

 

The Minimum Night Flow (MNF) (UKWIR, 1994 and 2011) monitoring is the simplest 

method employed by the UK WCs to detect pipe bursts/leaks. The MNF monitoring 
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technique involves comparing the current MNF to the acceptable MNF of the DMA at 

discrete time intervals (e.g., hourly, daily). The disadvantage of such method is the 

leak is detected only in the following day, after analysing night flow and pressure data. 

There is no standard mechanism to check if the MNF values are valid. Hence the UK 

WCs usually compare the current and historical flow/pressure for the same time period 

and day. This method is often referred as flow/pressure trending to detect existing pipe 

bursts/leaks based on the difference between the current and historical flow/pressure.  

 

Wang et al. (1993) proposed a method of leak detection based on autoregressive 

modelling. This method requires pressure measurements from 4 different pressure 

meters with a sampling frequency of 50 Hz. Two pressure meters were placed at each 

end of the pipeline. A leak is detected by analysing the time sequences of the pressure 

gradient at the inlet and outlet of the pipeline. It was shown that a 0.5% leakage in a 

120 m long pipe can only be reliably and almost instantly detected by this method. The 

performance of this method on a simple/complex WDS section is yet to be established. 

Therefore, its detection capability and limitation remain unknown. 

 

The American Water Works Association (AWWA) and the International Water 

Association (IWA) published water audit guidelines in 1999 and 2000 respectively. The 

water audit guidelines (AWWA, 1999; IWA, 2000) assist leak technicians to calculate 

the amount of lost water based on the estimations of the water produced at the 

sources, water imported and exported at the WDS section boundary. The water audit 

provides an overview of water distribution in a WDS section especially an area that is 

experience high leakage. This approach can provide more accurate leakage estimates 

if there are continuous high frequency measurements. However, high frequency data 

are rarely gathered for WDS section monitoring due to high transmission cost and large 

computer data memory requirement. This technique mostly works well during the night. 

Therefore, it is not feasible for online burst detection.  

 

Zhang (2001) presented an optimum sequential analysis technique (Sequential 

Probability Ratio Test) to detect changes in the inlet and outlet flow and pressure 

measurements. Both flow and pressure measurements were performed with a 30s 

sampling interval. The system was implemented on a 37 km long propylene pipeline 

and was shown to detect pipe bursts/leaks (% of average WDS section demand) with 
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less than 20% error in position. The detection time was less than 20 minutes. The 

method has been trailed on a simple WDS pipelines hence its capability in a complex 

WDS section is unknown.  

 

Mounce (2002) proposed the use of a Mixture Density Artificial Neural Network (MD-

ANN) (Bishop, 1994) to predict flow value 24 hours ahead based on historical flow data 

which was then compared to the observed flow data. The predicted and observed flow 

values were analysed by a classification module. This classification module gives the 

level of abnormalities in the observed flow value by using a binary leak/no-leak or 

burst/no-burst indicator. The main strength of the MD-ANN model is the opportunity to 

use time series data to forecast both flow/pressure reliably. However, the time window 

used in the experiment is between 12 hours and 24 hours which is deemed too long 

for burst detection in near real-time. 

 

Mounce and Machell (2006) studied different type of ANNs for classifying flow and 

pressure data pattern under normal and abnormal conditions. The two ANNs studied 

were Static ANN and Time-Delay ANN (Haykin, 1994). It was found that the Time-

Delayed ANN is capable of learning the simulated leaksô patterns of the engineered 

events and 75% of the leaks were detected. These engineering events involve opening 

of a fire hydrant for a specified time period. The classification task of leak is proven to 

be difficult unless further details of engineered events are known. In reality, the leak-

size, causes of the leak and starting time for a leak are likely to be unknown.  

 

Mounce et al. (2006) developed a pipe/leak burst detection methodology that uses the 

combination of ANN and Fuzzy Inference System (FIS) for an online detection of 

bursts/leaks at a DMA level. The ANN is based on a mixture density network and 

trained on a real historical flow data to predict the next 24 hours flow profile and then 

apply a FIS to detect abnormal flows. The FIS compares the observed flow values with 

predicted flows over a selected time windows to check if there is abnormal flow within 

the flow observations. This technique is applied offline to a real WDS flow observations 

and detects 44% of abnormal flow that were correlated to definite bursts. Based on the 

results, Mounce et al. (2007) further improved the proposed detection methodology to 

accurately estimate the average flow of the bursts/leaks. The authors validated the 
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method using the historical flow data and repaired bursts/leaks data including 

engineered events. The improved burst/leak detection technique was tested on a real-

life WDS section with additional rules in a live environment (Mounce & Boxall, 2010). 

It detects 36% of raised alarms are correlated to definite bursts and 38% of high 

abnormal demands (Mounce & Boxall, 2010). Again, the issue with this burst/leak 

detection methodology is the time taken to generate alarm when abnormal flow or pipe 

burst occurs. The time window to raise a pipe burst/leak alarm is still between 12 hours 

and 24 hours which is a significant drawback to the developed burst/leak detection 

approach.  

 

Mounce et al. (2011) applied a Support Vector Regression (SVR) technique to detect 

pipe bursts/leaks using the unusual differences between WDS flow/pressure 

observations and predictions. Prior to applying the SVR to output flow/pressure 

predictions, historical flow and pressure observations are used to train SVR method.  

The technique makes use of both flow and pressure observations from a real WDS 

without using a hydraulic model to detect pipe bursts ranged in size from approximately 

10% to 50% of the average daily maximum flow. The technique is applied in a real 

WDS data to detect burst offline.  It is found that SVR methodology raise alarm faster 

than the hybrid ANN/FIS method when there is a burst. The results show 22% of the 

raised alarms were false alarms which are higher than the previous studies reported 

by the same authors (i.e., 18%-false alarms was reported in study by Mounce et al., 

(2010). However, it is critical to point out that only pressure data was used to perform 

the burst/leak detection offline.  

 

The pipe burst/leak detection methodologies developed in Mounce (2002, 2006) 

papers and Mounce et al. (2006, 2007, 2010, and 2011) are effective for pipe burst/leak 

detection at DMA level in near-real time. The main advantage of their method is the 

AI-technique (SVR or ANN) relies on time series observed flow/pressure data which is 

regarded as data driven method. The flow/pressure prediction model is capable of 

learning flow/pressure profiles in 12/24 hours window. The prediction model may not 

be adaptable to change the predicted values when there is a change within the DMA 

section in real-time. However, the authors highlight the challenges to detect pipe 
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bursts/leaks with pressure data which showed lower success rate of detecting pipe 

bursts/leaks compared to the flow data only.  

 

Aksela et al. (2009) developed a self-organising Map ANN (Kohonen, 1990) for leak 

detection. The ANN is trained by using flow data containing the knowledge about 

reported pipe bursts/leaks. The authors used the daily flow average due to the great 

variance in behaviour between different days of the week. The results show the leaks 

in a DMA are detected successfully but the leak assessment frequency is too low to 

minimise water wastage due to leakages. Hence, the method is unfitting for real-time 

applications coupled with the heavy reliance on quality training data with little noise 

(i.e., sufficient record of leaks). 

 

Ye and Fenner (2011) presented a novel burst detection method of using Adaptive 

Kalman Filtering for an automatic burst/leak detection in WDS based on flow and 

pressure observations. The Adaptive Kalman Filter modelled the normal flow and 

pressure data and then calculate the difference between the predicted and observed 

flow/pressure data. These differences are used as an indication of the abnormal 

flow/pressure variations relating to the bursts/leaks. The method is applied on a several 

real DMAs with historical data containing engineering events. The results show the 

burst events identified by customer contacts are detected successfully. The 

magnitudes of the burst correspond to the flow residual between the corrected flow 

and observed flow.  

 

The studies in Ye and Fenner (2011) including Mounce et al. (2006, 2007, 2010 and 

2011) show that flow observations are more sensitive to pipe bursts/leaks than 

pressure observations. Hence, lower success rate of bursts/leaks detection based on 

pressure data only in their research works. They reported that alarm generated due to 

pressure observations correspond well to the bursts/leaks or engineered events. The 

possible reasons why the pressure data are insensitive to small-medium bursts/leaks 

are as follows: 

ǒ The service reservoir can support the pressure in the nearest/immediate 

downstream DMAs even if a burst/leak has occurred; 
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ǒ The location of pressure meters especially pressure meter at the highest point 

of the DMA may be insensitive to small-medium sized bursts/leaks; 

ǒ The pressure value at the interval is the average value of previous pressure 

values between the intervals hence, losing potentially useful information in the 

data; 

ǒ Pressure observations tend to be very noisy; 

ǒ The relationship between bursts/leaks location and pressure meters deem 

complex and not fully understand (i.e., pressure meters close to the bursts/leaks 

may not be sensitive enough). 

 

Romano et al. (2011, 2012) developed a new methodology that makes use of ANNs 

to forecast pressure and flow in short term, SPC techniques for short and long-term 

analysis of the pipe burst based on pressure and flow differences, and Bayesian 

Inference Systems (BISs) for inferring the probability of a pipe burst and raising 

corresponding detection alarms. The authors used a wavelet analysis to de-noise the 

flow and pressure observations before training ANN and BIS. This is to alleviate the 

problem relating the noisiness of the flow/pressure. The burst methodology is applied 

on a real flow and pressure data based on engineered events in a rural DMA. The 

results illustrate that it can successfully identify these events in a fast and reliable 

manner with a low false alarm rate online. Romano et al. (2012, 2013) presented a 

methodology based on ordinary kriging to locate the approximate location of the 

bursts/leaks or engineered events. This method is tested in a rural DMA and its result 

look promising. However, the developed event detection and localisation methodology 

is unlikely to work effectively when there is an operational change (i.e., valve closure) 

with a complex WDS section. 

 

Palau (2012) presented a multivariate statistical technique, called Principal-

Component Analysis (PCA) to monitor and control of water inflows into DMAs of urban 

networks. The PCA technique makes a quick sensitive analysis of the inflows into a 

DMA without utilising a hydraulic model. The technique defines the control charts for 

T2 Hotelling and distance to model that help a leakage technician to identify any 

anomalous behaviours regarding water use, bursts, or illegal connections of the WDS. 

The PCA technique simplifies the original set of flow rate data and syntheses the most 
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significant information into a statistical model that is able to explain most of the 

behaviour of the WDS. The techniques were applied to a 7 months DMA inflow data 

and a burst of approximately 5% of the average flow could be detected with a 

probability between 30% and 95%, depending on the hour of occurrence. Despite its 

potential to detect burst, the technique hasnôt been applied in a real life WDS section 

or model hence its reliability of the method and detection time are yet to be established.  

 

Arsene et al. (2012) used a combination of fuzzy logic, an ANN technique and a Graph 

Theory for diagnosis of bursts/leaks and other operational faults in WDS. The two 

ANNs are trained, the first ANN is trained on Least-Squared loop flows state estimates 

and the second ANN is trained on Least-Squared loop nodal head estimates. This 

bursts/leak detection method uses the patterns of state estimates with confidence 

limits to detect bursts/leaks within the WDS. It is found that there is a high 

misclassification rate of detecting bursts/leaks with the second ANN. This is because 

the trained ANN is affected by topological error and operation time periods. The first 

ANN performs better compared to the second ANN and it has not been applied in a 

complex WDS section in real-time to assess its validity and the computation time. 

 

Ye and Fenner (2013) developed a model that uses polynomial function relating to 

historical flow data based on the weighted least squares method for detecting burst 

unsupervised within the WDS. This approach makes use of Expectation-Maximization 

(EM) algorithm that uses any historical flow observations to output the normal water 

flow (non-burst condition). The flow observations from field are then compared to the 

normal water flow estimated by the EM to detect burst. The burst magnitude is 

estimated from the difference between the measured and estimated flow. This method 

is applied to both real and engineered data offline and it detects pipe bursts 

successfully.   

 

Tao et al. (2013) proposed a burst detection method based on Artificial Immune 

System (AIS). The AIS is trained on data under normal conditions via clonal immune 

algorithm. The burst is detected by using the Euclidean distance between the observed 

data to the predefined data from AIS. The technique is applied offline on a simplified 
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DMA with synthetic data. It is found that the technique has a good potential of detecting 

bursts but the application of the technique in a WDS section is yet to be established.  

 

Bakker et al. (2013) presented a burst detection method that utilise the Cumulative 

Sum (CUSUM) (Misiunas, et al., 2005) and heuristic methods. The method uses the 

combination of demand forecasting module to forecast 48 hours demand with 15 

minutes time steps and CUSUM (Misiunas, 2004) for identification of WDS anomalies 

(i.e., pipe bursts/leaks). The method was applied on real-time hydraulic model and data 

from the western part of Netherlands water supply. The results showed all the burst 

flow that exceeds 20-25% of the average daily flow was detected offline. Therefore, 

the method is not feasible to detect small to medium sized burst/leak in near real-time.  

 

Ishido and Takahashi (2014) developed a new method for real-time burst/leak 

detection in WDS using real-time pressure data only. The method uses head loss ratio, 

a ratio of headloss based on expected pressure to headloss based on observed 

pressure, a burst/leak indication in a WDS section. This method is applied in a real-life 

Yokohama WDS section in Japan with its hydraulic data. The results look promising 

but it is limited to one case study. The reliability of the detection method in various 

burst scenarios at different time of the day are not established.  

 

Jung et al. (2015) compared three univariate and multivariate Statistical Process 

Control (SPC) methods with respect to their burst detection effectiveness and 

efficiency. The three-univariate statistical process control methods used in the paper 

are: (1) the Western Electric Company rules, (2) the CUSUM method and (3) 

Exponentially Weighted Moving Average (EWMA). The three multivariate SPC 

methods are: (1) Hotelling T2 method, (2) multivariate versions of CUSUM and (3) 

EWMA. The synthetic data generated via hydraulic model were used to compare the 

six SPC methods capability. Among the six developed detection methods, the 

univariate EWMA method was found to be the most effective technique to detect 

bursts. The authors found difficult to utilise the three univariate SPC methods to detect 

small-sized burst (below 20% of average daily flow). Therefore, the feasibility of the 

univariate EWMA method to detect small-sized bursts in a complex WDS section in 

near real-time is compromised. 
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Hutton and Kapelan (2015) presented an application of a probabilistic demand 

forecasting approach to identify pipe bursts. The method produces a probabilistic 

forecast of future demand under normal conditions. This, in turn, quantifies the 

probability that a future observation is abnormal. The method, when tested using 

synthetic bursts applied to a demand time-series for a UK WDS, performed well in 

detecting bursts, particularly those greater than 5% of mean daily flow at night time. 

The proposed method is not tested on real-life flow/pressure data (including 

engineered events) hence the validity of the detection method remains unknown. 

 

Lee et al. (2016) proposed a novel methodology that uses the CUSUM method and a 

Wavelet Transform (WT) to detect and locate bursts in water pipe networks. The 

proposed network node matrix represents the candidate locations of bursts for each 

installed flow/pressure meters. The developed burst detection and location system is 

validated with real field data obtained from simulated bursts by opening hydrant valves 

for both simple and complex pipe networks. The result shows the developed algorithm 

work well. The authors believe the developed algorithm shows a better result 

compared to those applied to real water-supply systems up to the present (2016). 

However, the paper didnôt reveal its capability of the proposed method in term of 

detecting or locating pipe bursts at different time periods and burst magnitudes. 

 

In summary, this section reviewed the developed data-based techniques in recent 

years. The data-driven techniques usually use flow/pressure data and employ SA-

based techniques to analyses the flow/pressure signal values for online bursts/leaks 

detection. These techniques can deal with large amount of noisy and raw data from 

the hydraulic meters and extract the meaningful information for leakage technicians 

and operational engineers. However, the data-driven techniques can become 

redundant when there is an operational change in a WDS section (i.e., valve closure). 

This limitation can make the data-driven techniques redundant in near real-time. Most 

of the data-driven detection methods have not been for different burst scenarios at 

different time of the day. The detection time to raise burst alarm are rarely discussed 

or mentioned in the literature which indicate most of the data-driven techniques were 

developed to detect pipe bursts/leaks offline. 
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The literature on data-driven techniques provided a compelling argument to use both 

flow meter and pressure meter within a DMA. The information from the flow meter and 

pressure meter provide further insight of the bursts/leaks occurrence and improve the 

success rate of pipe burst/leak detections in a reliable and timely manner. It has to be 

further noted that the observation from the flow meters and pressure meters are not 

the only source of information for bursts/leaks detection in real-time. A hydraulic model 

of the DMA or WDS section have been utilised as well to detect bursts/leaks and locate 

the possible location of bursts/leaks. Hence, the next section looks at the advancement 

of leak detection via the combination of flow/pressure observations with a hydraulic 

model.  

   

2.1.3 Hydraulic Model-based Techniques 

 

This section reviews the hydraulic model-based techniques that make use of a 

hydraulic model of the WDS section and hydraulic data for automated abnormal flow 

detection. In the UK, each WC divides their WDS section into hundreds of DMAs to 

assess the abnormal flow especially bursts/leaks associated with the individual DMA. 

The UK WCs usually install flow meters at the inlet and outlet of a DMA while install a 

pressure meter at either the highest elevation or critical location of the DMA. The 

installation of flow/pressure meters are getting cheaper coupled with lower data 

transmission cost rand faster computing processing unit. This has provided an 

opportunity for the UK WCs to collect more flow/pressure data in real-time at the low 

sampling frequencies ranging from every 10 minutes to 24 hours. These flow/pressure 

data from the WDS section are transmitted to their SCADA system. The real-time 

collation of flow/pressure data present an opportunity to improve detection of large 

bursts/leaks in a DMA. It is pertinent to mention that the accuracy and reliably of the 

flow/pressure meters have improved over the last decade has also improved. 

 

The detection of abnormal flow with hydraulic model are mostly based on either 

residual analysis between the WDS hydraulic model predictions and the WDS 

observations (i.e. Bargiela, 1984; Ellul, 1989; Pudar and Liggett, 1992; Powell, 1992; 

Carpentier and Cohen, 1993; Jung and Lansey, 2013) or evaluation of the pattern of 
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WDS state estimates (i.e. Gabrys and Bargiela, 1999 and 2000; Caputo and 

Pelagagge, 2002 and 2003; Izquierdo et al. 2007; Arsene et al. 2012).  

 

Several studies can be found in the literature that propose hydraulic model-based 

techniques which successfully detect abnormal flow in a real-life WDS section. Many 

researchers evaluate the current state of the WDS section using a combination of real-

time hydraulic data, AI/statistical-based techniques and hydraulic model. The WDS 

hydraulic model consists of nodes (i.e. reservoir, tank and junction) connected by link 

(i.e. pipe, pump, valve) which solves the mass and energy conservation equations. 

Due to limited number of observations, the equations do not fully consider all the WDS 

variables. Therefore, the state estimation techniques (Piotrowski, 1978; Rao et al. 

1974; Sterling and Bargiela, 1984) are widely used to ensure that the WDS hydraulic 

model predictions closely match the WDS observations. Such techniques process the 

mass and energy conservation equations and the additional equations relating to the 

minimisation of errors with limited and/or inaccurate flow/pressure data. These state 

estimation techniques require high computational overhead due to large amount of 

equations needed to be solved. However, an optimisation method based on 

numerically stable factorisation with parallel and distributed computing structure is 

used to reduce the computational time (Bargiela, 1984; Bargiela and Hainsworth, 1989; 

Hartley and Bargiela, 1995; Hosseinzaman, 1995). Gabrys and Bargiela (1995) 

developed a refined ANN to solve the conservation equations of WDS which provide 

better results at lower computational time due to the parallel and distributed computing 

structure of the developed ANN.  

 

Ellul (1989) used the residual data between the observed pressure and flow rate and 

the predicted pressure and flow rate data from WDS hydraulic model. The amount of 

pipe burst/leak used is proportional to the obtained residual flow. The method is only 

applied on a simple single-branch of WDS for burst/leak detection. Therefore, its result 

is not sufficient to validate the capability of burst/leak detection method in a complex 

DMA with noisy observation data 

 

Pudar and Liggett (1992) used a non-linear derivative-based optimisation method to 

detect burst/leak with a hydraulic model and ñartificialò pressure and flow 
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measurements. The optimisation method is Levenberg-Marquardt-based algorithm 

(Levenberg, 1944; Marquardt, 1963). The sum of squared differences between 

predicted and ñartificialò pressure measurements is used as the objective function. 

Bursts/leaks at nodes were expressed in terms of pressure by an orifice formula. The 

method is applied on a small pipeline (11 nodes and 7 pipes). The results look 

promising but the proposed methods have not been applied to real-life case studies 

yet. This was because the measurement technologies and hydraulic model calibration 

process used in 1992 were not as advanced as the current technologies and calibration 

process (year 2016).  However, the author concludes that accurate hydraulic model 

parameters and high number of measured data is required to improve the detection 

rate and leak magnitude. Therefore, the number of flow/pressure meters and the 

degree of model calibration required for a WDS section are yet to be established. 

 

Liggett and Chen (1994) used a Transients-based technique which involves studying 

the nature of unsteady fluid flow caused by rapid flow/pressure fluctuations in the WDS. 

The rapid flow/pressure fluctuations in WDS can be caused by pipe burst/leaks, valve 

closures, pump failures, pump start-up and shut-down. The sudden increase/decrease 

of flow/pressure are used as burst/leak indicator to raise a pipe burst/leak alarm. The 

result shows successful detection of pipe bursts/leaks offline. However, this technique 

canôt be applied in real-time because it requires a high frequency of flow/pressure data 

collection (i.e., every 5 minutes). 

 

A variety of transient-based techniques have been developed to detect abnormalities 

in pipelines since 1994. Colombo et al. (2009) and Puust et al. (2010) reviewed 

transients-based techniques and they can be categorised into the 3 groups below: 

(1) Leak Reflection Method aims to detect the presence of the leak via data analysis 

of the transient wave travelling along the pipe reflect at the leak (transient trace). 

It is regarded as the simple application of transient-based analysis for leakage 

detection in WDS. The uses of leak reflection method can be found in recent 

papers such as Ferrante and Brunone (2003a and 2003b); Beck et al. (2005); 

Lee et al. (2007) and Yang et al. (2013). 

(2)  Inverse Transient Analysis (ITA) technique makes use of inverse calibration of 

hydraulic model of water system to the known/measured transient data. Such 
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techniques involve using pressure measurements to calibrate hydraulic model 

parameters (i.e., pipesô frictional factor) and determine the size/location of the 

leak. Authors like Kapelan et al. (2003); Karney et al. (2008); Covas and Ramos 

(2010); Shamloo and Haghighi (2011) and Stephens et al. (2013) used ITA 

techniques to solve their respective hydraulic problems.  

(3) The Frequency Response Method analyses the transient response in the 

frequency domain (transformed from time-domain transient response data) for 

leak identification and localisation (including estimating burst size). Fourier 

transforms are commonly used to transform time-domain data into the 

frequency domain. This technique is mostly applied in distribution pipeline 

systems with few leaks (Mespha et al., 2001; Ferrante and Brunone 2003a; Lee 

et al., 2006; Duan et al., 2012) 

 

The transient analysis-based techniques require greater understanding of DMA 

behaviour, unsteady friction, pipe roughness and WDS configurations. The hydraulic 

model of the studied WDS section is required to be highly calibrated to the highest 

degree before transient analysis-based techniques can be applied for leakage 

identification. In addition, most of the transient analysis-based techniques have been 

tested on field/laboratory pipelines under a control environment. Such transient 

analysis-based technique is not in position to be used as WDS leaks/bursts detection 

tool in near real-time.  

 

Gabrys and Bargiela (1999, 2000) presented a Neuro-Fuzzy method to evaluate the 

WDS state estimatesô patterns for bursts/leaks detection and identification. This 

approach is successfully applied on a water small distributed pipeline with a high 

number of system observations. In a real-life WDS section, it is unusual to have a high 

number of observations. Hence, Andersen and Powell (2000) proposed a standard 

Weight Least Squares (WLS) implicit state-estimation for a WDS section with a lower 

number of system observations. This method (based on loop equations) is applied on 

a simple grid water network without considering any associated uncertainties. Since, 

the hydraulic model uncertainties and WDS observations uncertainties are not taken 

into consideration. Hence, the Neuro-Fuzzy method is unlikely to be implemented in a 

real-life WDS section. This is because there is always error within the real-life WDS 
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observations. Thus, the results can be inaccurate which consequently raise numerous 

abnormal flow (i.e., pipe burst/leak) alarms.  

 

Caputo and Pelagagge (2002) presented a two-level ANN system where the first-level 

ANN determines the branch where the bursts/leaks occurs and the second-level ANN 

estimates bursts/leaks amount and location. The ANN architecture was applied on a 

simplified WDS section and on a real district heating system (Caputo & Pelagagge, 

2003) which showed promising results. The method can identify the location of the 

bursts/leaks. However, the authors did not consider the uncertainties of WDS 

observations are not taken into consideration which makes the method unfeasible for 

online hydraulic modelling of WDS.  

 

Bargiela et al. (2002) integrated Confidence Limit Analysis (CLA) with the Neuro-Fuzzy 

method developed by Gabrys and Bargiela (2000). The method is applied on a real-

life WDS hydraulic model with synthetic data to detect different size of bursts/leaks. 

The CLA provides the probable range of the WDS state estimates which are compared 

to the system observations. The Neuro-Fuzzy method integrated with the CLA 

demonstrated a robust performance with minimum number of misclassification for 

medium/large bursts/leaks. Furthermore, the application of such method is not reliably 

established since only synthetic hydraulic data was used. 

 

Poulakis et al. (2003) developed a Bayesian-based methodology to detect anomalies 

(i.e., pipe bursts/leaks) in flow measurements and deals with the uncertainties in WDS 

observation and modelling error at the same time. The hydraulic modelôs pipe 

roughness, water demands at nodes and artificial flow measurements were perturbed 

before the method was applied. The results showed that the method is sensitive to the 

perturbations in the modelôs parameters and measurements. The burst detection 

method can deteriorate if a perturbation is more than 5% is added to the WDS 

observations. 

 

Misiunas et al. (2004, 2005, 2006) used a negative pressure wave-based technique to 

detect leaks in laboratory pipelines. The technique involved the usage of transient 

wave arrival time at the measurement station(s) and the knowledge of the wave speed 
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to detect and locate the leak with hydraulic model.  The difference between the flow 

rate before and after the leak was used to estimate the burst flow. 

 

The negative pressure wave-based technique has been applied to a small real life 

WDS section and it performed reasonably well to detect bursts in short time (Misiunas 

et al., 2005 and 2006; Srirangarajan et al., 2010 and 2012). However, these studies 

show that the performance of the negative pressure wave-based techniques can be 

affected by (1) changes in demand and the transient waves induced by bursts/leaks or 

pump start-ups, valve closures canôt be easily differentiated; (2) bad measurement due 

to background noise; (3) complex WDS configuration and (4) location of pressure 

meters. The implementation of the negative pressure wave-based techniques in real-

time can be too complicated due to the complex WDS configurations which affects and 

weakens the bursts/leaks-induced transient wave. Hence, the existing negative 

pressure wave-based techniques are not considered for detection of burst/leak in a 

WDS section. 

 

Shinozuka et al. (2005) presented a method that makes use of ANN and hydraulic 

model to assess the location and extent of the damage of a burst/leak caused by 

earthquake. The ANN was trained on a collection of generated flow and pressure data 

from the hydraulic model. The trained ANN use the Euclidean distance (Deza & Deza, 

2009) between a suspected burst/leak to the monitoring stations and then use an 

indicator for damage assessment. The method was applied on a simple synthetic WDS 

section which has 1 damaged location and 3 monitoring stations. The WDS section 

studied was shaped as a rectangular grid with 2 different pipe lengths. The results 

show the method was sufficient effectively for the studied WDS section. The proposed 

detection method is not feasible for real-life modelling of WDS section because vast 

majority of the WDS section are arranged in a rectangular grid. 

 

Puust et al. (2006) proposed a method that uses the Shuffled Complex Evolution 

Metropolis (Vrugt, et al., 2003) optimisation algorithm to locate pipe burst/leak area. 

This algorithm estimates the posterior probability density functions of the burst/leak 

areas. It was successfully applied on two artificial case studies (the first case study 

includes perturbed measurements while other case study has perfect observations). 
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The probabilistic methodology provides a final discrete probability value for the 

burst/leak size which requires high computational time. 

 

Wu and Sage (2006, 2007) proposed a method that utilise Genetic Algorithm (GA) 

optimisation technique (Holland, 1975) to detect leaks in WDS. The difference between 

the total leakage rate and the total background leakage rate was treated as the total 

burst leakage rate. The total leakage rate is the difference between the total DMA 

demand (derived from inflow and outflow meter) and the estimated DMA consumption. 

The total leakage rate is distributed across the DMA nodes as a fraction of the total 

numbers of properties. The background leakage rate for each node is estimated 

through an empirical formula, captured as the ñInternal Condition Factorò which is 

based on the age of the pipe (i.e., the older a pipe, the greater the background leakage 

rate). The difference between the total leakage rate and total background leakage rate 

is known as total burst leakage rate. Then the GA optimisation technique was applying 

the total burst leakage rate across the hydraulic modelôs nodes. The solution fitness 

was evaluated by comparing the field observed pressures and the simulated 

pressures. The methods were tested in a complex real-life DMA with engineered 

events and real field data. The results showed good indications of the leakage 

ñhotspotsò (when checked against historical data on leak repairs) in few DMAs. The 

leakage hotspots are potential location of pipe leaks. This method was incorporated 

into the WaterGEMS software (Bentley Systems) for offline leak detections. 

 

Izquierdo et al. (2007) also used a Neuro-Fuzzy approach for diagnosing leaks and 

other faults and anomalies in WDS. The method makes use of the WDS hydraulic 

model to generate the estimated states with error bounds (fuzzy estimated states) to 

train the ANN for detecting abnormal flows with WDS field observations and demand 

predictions. It is found that the method works reasonably well in a small WDS section 

using synthetic hydraulic data. The disadvantage of this method is a large number of 

hydraulic meters may be required to provide more information concerning the WDS 

section and its application in a live environment is unknown.   

   

Mashford et al. (2009, 2012) used Support Vector Machines (SVMs) to analyse a 

collection of pressure data to obtain information concerning the location and size of 
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leaks in the WDS. The SVM is trained on perfect pressure data which are generated 

from EPANET model. The results show that the location and size of leaks are predicted 

with good degree of accuracy. However, the EPANET model and observation 

uncertainties are not included in the SVM hence the algorithm is unlikely to be 

implemented for practical purposes.   

 

Bicik (2010) presented the use of evidential reasoning to estimate the likely location of 

a burst pipe within a WDS by combining outputs of several models. A novel Dempster-

Shafer model is developed, which fuses evidence provided by a pipe burst prediction 

model, a customer contact model and a hydraulic model to increase confidence in 

correctly locating a burst pipe. The methods work only well on a number of real life and 

semi-real case studies. 

 

Skworcow and Ulanicki (2011) proposed an e-FAVOR approach (Borovik, et al., 2009), 

to detect and locate pipe bursts in a DMA. The method involves carrying out an 

extended fixed and variable orifice (e-FAVOR) test where the DMA inlet pressure is 

being stepped up and down, while recording inlet flow, inlet pressure and pressure at 

selected locations inside the DMA using loggers. The results of the e-FAVOR test are 

used together with a hydraulic model of the DMA as the inputs to a software tool, which 

performs series of simulations and facilitates data analysis. The methodology was 

tested in practice in a manual manner and proved to be effective, but it is time 

consuming. The reliability of the approach to detect at different period of the day is not 

yet established.  

 

Arsene et al. (2012) presented a method that analysis the pattern of hydraulic data 

using the combination of ANN, fuzzy logic and graph theory for the detection of pipe 

leaks. The method is trained on generated data from the numerical model of WDS 

based on a Least Squares (LS) loop flows state estimator and a Confidence Limit 

Analysis (CLA) algorithm for uncertainty quantification. It is found that the method 

performs well when the method is trained on nodal demand data compared to the 

combination nodal heads and pipe flow rates data. The major issue with the method is 

the way the WDS model has to be spanned out as a tree /co-tree model which can be 
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either labour-intensive or computational expensive to span out a larger WDS section 

model.  

 

Jung and Lansey (2013) applied the Extended Kalman filter method for burst detection 

when there is a boundary change within WDS. The detection metric used is 

standardised Kalman innovation sequence (Mehra & Peschon, 1970). Standardised 

Kalman innovation is the product of Kalman Gain (refer to equation (4)) and the flow 

residual between the observed and estimated pipe flow. It is examined to identify a 

pipe burst. Any standardised Kalman innovation sequence that falls outside the pre-

defined threshold is seen as a pipe burst hence, an alarm is raised. The method is 

applied on a real WDS model with synthetic data generated from the WDS hydraulic 

model. The flow observations are taken at the interval of every 5 minutes which may 

not be practical for a large water system due to the computational power and memory. 

The reliability of the method is unknown since it has not been applied on a real-life data 

and other burst scenarios (e.g., different burst magnitudes at different time periods, 

locations and noise levels).   

 

Kang and Lansey (2014) proposed a novel approach for detecting pipe bursts with a 

WDS specific burst sensitivity tables. The WDS burst sensitivity table is developed by 

using artificial burst events and analysing the WDS hydraulic responses to the given 

bursts. This burst detection approach is applied to a simple WDS hydraulic model 

which has 2 reservoirs, 2 tanks, 2 pumps, 9 nodes and 18 pipes. The authors selected 

four pressure logger locations and six flow meter locations based on the WDS 

sensitivity table to monitor the simple network. The results show that the proposed 

approach is effective to quickly locate bursts and reduce response times. However, the 

uncertainty of the pressure and flow are not taken into consideration. The application 

of the method to a real WDS model and real-life flow and pressure observations are 

yet to be established.   

 

Anjana et al. (2015) proposed the use of a Particle Filter (PF) based technique for the 

detection of leaks in water pipelines. The developed PF-based detection model use 

the standard SPC-CUSUM chart was able to detect anomalies in the system. This 

technique was applied to a real-world network in Mandya (Karnataka, India). It 

successfully detects a pipe leak in the real network (trunk-main model). Hence the 
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performance of the technique in a complex DMA in real-time is unknown. This method 

shows some potential for online detection burst. 

 

Sousa et al. (2015) applied both simulated annealing and graph theory to water 

distribution networks to locate leaks. This methodology is based on pressure 

measurements and explores the exchange of information between an optimization 

model and the hydraulic simulation of the WDS in steady state conditions. The cases 

considered a single leak and two simultaneous leaks. The result shows the identified 

pipes are close to the actual leaky pipe. However, the time of leak detection and 

localisation is unknown. It is difficult to assess the performance of the developed 

method in different burst scenarios at different time period.  

 

In summary, the hydraulic model-based techniques for pipe bursts/leaks identification 

are performed by comparing the predicted flow/pressure to the corresponding WDS 

observed flow/pressure. Most of the hydraulic model-based techniques are tested on 

a real-life/artificial WDS section for mostly offline pipe burst detection. Many of the 

hydraulic model-based techniques in the literature assumed the observations are ideal 

noise-free. The major benefit of hydraulic model -based techniques compare to the 

data-driven techniques is they can be used to find the optimal location of the hydraulic 

meters and approximate area of the bursts/leaks. To use the hydraulic model-based 

techniques effectively for bursts/leaks detection, it is well established that an up-to-

date hydraulic model is required. However, it is not necessary to obtain a very accurate 

hydraulic model because the hydraulic model can never match the reality of the WDS. 

Most of the hydraulic model-based techniques can detect bursts/leaks and estimate its 

approximate location in their respective case study. Information relating to the 

developed burst methodôs performance in different burst scenarios/time periods or 

detection time/time taken to approximate bursts/leaks locations are rarely provided in 

the literature.  

 

The Geography Information System (GIS) of the WDS have improved over the recent 

years. GIS is even operating live in UK WCsô control room. The information from the 

GIS is often used to update the hydraulic model parameters especially when there is 

an operational change (e.g., pump failure or valve closure). Most of the hydraulic 
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model-based techniques do not consider the effect of the operational change in a WDS 

section. Therefore, a development of an online hydraulic model-based technique for 

bursts/leaks detection and localisation methods even in the event of WDS operational 

change is required. A hydraulic model that reflect the current status of the WDS in near 

real-time can provide further insight into the affected WDS section when there is a pipe 

burst/leak. 

 

Several researchers (i.e., Farley et al. 2008 and 2010; Skworcow and Ulanicki, 2011, 

Kang and Lansey, 2014) have developed a technique to find the optimal location of 

pressure meters in a DMA. Some of the techniques have been used by UK WCs. 

Hence it is beneficial to use the suggested optimal location of hydraulic meters from 

their developed techniques. The meters can assist in detecting bursts/leaks and/or 

finding the approximate bursts/leaks location reliably. None of the papers in literature 

have compared the capability of different combinations of hydraulic meters for WDS 

burst detection. 

 

However, it is also pertinent to mention that the UK WCs are increasing the number of 

hydraulic meters (particularly pressure sensors) in a DMA. Unfortunately, hydraulic 

metersô data from the field can be noisy can affect the performances of the developed 

burst detection/location techniques. Therefore, the next section review data 

assimilation methods that account for hydraulic model predictions and WDS 

observation uncertainties to improve hydraulic model state predictions. 

 

2.2.4 Comparison of Burst Detection and Location Techniques 

 

Section 2.2.2 and 2.2.3 described and reviewed several techniques for online 

bursts/leaks detection and/or location. The techniques analysed have different 

capabilities, benefits and limitations. The hardware-based techniques for detecting and 

locating bursts/leaks in WDS were not reviewed given the focus of this thesis on 

numerical, i.e. software type techniques. These techniques require less man-power to 

detect/suspect a burst/leak in WDS compared to the hardware-based techniques. The 

key factors to investigate the feasibility of the reviewed hydraulic techniques for 

detecting and locating burst/leak in real-time are:  
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ǒ Ability to detect and locate pipe bursts/leaks in a reliable and timely fashion; 

ǒ Ability to process large volumes of raw data (noisy data) from hydraulic meters; 

ǒ Ability to be used in changing WDS configurations. 

 

Table 2.1 summarises the main characteristics of the bursts/leaks detection and 

location techniques that have been reviewed in this section. Table 2.2 summarises 

their individual advantages and disadvantages.  

 

Table 2.1 and Table 2.2 reveal the potential of the hydraulic model-based techniques 

have not been fulfilled relating to the bursts/leaks detection and location accuracy in 

real-time in different burst scenarios. Only the negative pressure wave-based 

techniques (and possibly transient analysis-based) may have the potential to locate 

the location of pipe bursts/leaks in a WDS section. However, both techniques require 

new substation to host sophisticated sensors (acoustic-based hardware), highly 

calibrated hydraulic model, high frequency of data and higher number of hydraulic 

meters due to the sensor-to-sensor spacing. These techniques have been successful 

in a simple distribution pipeline system or WDS section under controlled environment. 

They are not in position to be implemented in real-time with noisy data from flow meters 

and pressure meters. However, the reviewed hydraulic data/model-based techniques 

highlight the usefulness of a hydraulic model in detecting and locating pipe 

bursts/leaks.  
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Table 2.1: The Main Characteristics of the Reviewed Hydraulic Techniques for Pipe Bursts/Leaks Detection/Localisation 

Technique Techniqueôs functionality: 

bursts/leaks 

detection/localisation 

Computational 

time to  

detect bursts/leaks 

Techniqueôs Application: 

Water network or pipelines 

Data-driven techniques ǒ Most of the data driven 

techniques in the literature are 

developed to detect pipe 

burst/leaks.  

ǒ One data driven technique 

(Romano et al., 2011, 2012) is 

developed to locate pipe 

bursts/leaks in real-time. 

Low (every 10 

minutes) ï High 

(every 24 hours) 

WDS section (i.e., DMA). Pipesô 

diameter varies between 25mm 

and 600mm. 

 

System Pipelines (i.e., 

Medium/Large Diameter Trunk 

Mains). Pipesô diameter varies 

between 600mm and 1500mm. 

Hydraulic model-based 

techniques 

ǒ Majority of the hydraulic model-

based techniques in the 

literature aim to detect pipe 

bursts/leaks offline. 

ǒ Few papers focused on locating 

pipe bursts/leaks offline. 

ǒ Limited number of papers 

developed model-based 

technique to detect pipe 

bursts/leaks in real-time. 

Low (every 10 

minutes) ï High 

(every 24 hours) 

WDS section (i.e., DMA). Pipesô 

diameter varies between 25mm 

and 600mm. 

 

System Pipelines (i.e., 

Medium/Large Diameter Trunk 

Mains). Pipesô diameter varies 

between 600mm and 1500mm. 
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Table 2.2: The Main Advantages and Disadvantages of the Reviewed Burst/Leak Detection and Location Techniques 

 

Burst Detection / 

Localisation Techniques 

Advantages Disadvantages 

Data-driven techniques ǒ Data-driven detection/localisation techniques do not require high 

frequency flow/pressure measurements. 

ǒ Data-driven detection/localisation techniques can perform online 

monitoring of a WDS section effectively. 

ǒ Data-driven detection/localisation techniques work well in DMAs 

despite the complexity of the DMA because they do not consider 

DMAsô configuration. 

ǒ They also provide an efficient and consistent means for the analysis of 

large volumes of imperfect data. 

ǒ Data-driven detection/localisation techniques 

canôt provide further information on the 

approximated location of a pipe burst/leak within 

a DMA. 

ǒ Data-driven detection/localisation techniques 

canôt adapt to the changes in the WDS sectionôs 

operating conditions. 

 

Hydraulic model-based 

techniques 

ǒ Hydraulic model-based techniques do not require high frequency 

measurements. 

ǒ They can perform online monitoring of a WDS section effectively. 

ǒ Hydraulic model-based techniques can reduce the size of the 

approximated location of a pipe burst/leak within a DMA. 

ǒ Hydraulic model-based techniques care capable of adapting to the 

changes in the WDS sectionôs operating conditions. 

ǒ Hydraulic model-based techniques can detect and locate leaks in 

pipeline under controlled environment. 

ǒ Hydraulic model-based techniques can reduce the size of the 

approximated location of a pipe burst/leak within a DMA. 

ǒ Hydraulic model-based techniques rely heavily 

on calibrated hydraulic mode for successful 

detection and localisation of pipe bursts/leaks. 

ǒ Hydraulic model-based techniques require 

additional AI-Statistical techniques to detect or 

locate bursts/leaks. They are applicable to a 

small/medium sized WDS (i.e., DMAs). 

ǒ Hydraulic model-based techniques also require 

accurate measurements at multiple locations. 

ǒ Hydraulic model-based techniques can be 

affected by noisy WDS operations. 
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The pipe burst/leak detection and location techniques are reviewed using the following 

key points:  

(1) Ability to raise a timely and reliable alarm when there is a fluctuation in 

flow/pressure data (due to bursts/leaks) in real-time; 

(2) Ability to macro/micro locate bursts/leaks in near real-time, i.e. shortly after the 

burst/leak is detected;  

 

Among the reviewed techniques, the hydraulic model-based techniques make use of 

hydraulic model and large volume of raw data (noisy data) to detect pipe bursts/leaks 

in real-time meet the aforementioned criteria. The data-driven techniques do not use 

the hydraulic model hence offer an efficient and low time-consuming means for the 

automated on-line pipe bursts/leaks identification in real-life WDS sections. However, 

these techniques can become redundant when there is an operational change in a 

WDS section. Also, the hydraulic model-based techniques have the potential to provide 

additional information about the identified pipe bursts/leaks including the identification 

of a likely macro/micro burst location and its impact on the water service, all in near 

real-time.  

 

All of the above speaks in favour of using methods that can combine hydraulic 

simulation models with online hydraulic meters data for determining the analysed WDS 

state which, in turn, should enable more accurate pipe burst/leak detection and 

location. These, data assimilation type methods are reviewed in the next section.  

 

2.2 DATA ASSIMILATION METHODOLOGIES 

2.2.1 Introduction 

 

Data Assimilation (DA) methods are used in many scientific disciplines, including 

meteorology, hydrology and WDS modelling (Evensen 2003; Shang et al., 2006; van 

Leeuwen 2009; Matgen et al. 2010; Jung and Lansey, 2013). The aim of the review 

presented here is to highlight the main capabilities and limitations of reviewed DA 

methods in the context of their potential use for pipe burst/leak detection and location 

in WDS.  
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The DA method aims to estimate the hydraulic state(s) of the analysed WDS at a given 

point in time using observations and state forecasts. It works in a two-step procedure 

with the steps being the prediction and the correction step. In the prediction step, the 

DA method predict state estimate (i.e., flow/pressure at a given location) along with 

their uncertainties. In the correction step, the DA method combines the predicted 

values with the corresponding WDS observations (along with their uncertainties) to 

correct the state predictions at the same locations (Bargiela and Hainsworth 1989). 

The state predictions can include both hydraulic model parameters (i.e., demand 

coefficients, pipe roughness, and pump/valve status) and/or actual WDS states 

(boundary inflow/outflow, tank level).  

 

The prediction steps of a DA method for the WDS can be expressed as follows: 

 

●  ╕●  ⱷ    ⱷ ͯ ὔπȟ╠       (1) 

 

◐ ╗●  ▄   ▄ ͯ ὔπȟ╡       (2) 

 

where subscript t is the time step index; superscript c, f and p are denoted as corrected, 

forecasted and predicted value respectively; ●  and ●  are the forecasted and 

corrected state vector; ╕ represents the matrix structure that propagate the state vector 

from t-1 to t; ╗ is the observation operator that maps the state vector to WDS states; 

◐  is the total predicted (modelled) WDS state vector; ▄ is the observation error matrix 

and ⱷ  is the state error matrix which is assumed to be zero mean multivariate 

Gaussian noises with state model error covariance matrix ╠ . 

 

The state vector is corrected during the correction step of a DA method when observed 

data becomes available. The corrected state vector can be used either as the initial 

conditions or parameters of the hydraulic model for the future WDS state predictions. 

The accuracy of the state vector forecast depends on the availability of observation 

data, errors propagated from the initial conditions, model structural and parameter 

errors.  

 



59 

 

The DA methods have been developed for real time application to correct state model 

predictions based on pre-determined understanding of forecast error (Hutton, et al., 

2012). DA methods can be categorised into 2 groups; (1) sequential DA method and 

(2) variational DA method. The variational DA method uses objective function to 

minimise the error between the predicted WDS state estimates and the studied system 

observations by adjusting state estimates (i.e., initial boundary conditions or hydraulic 

model parameters). This method is viewed as a constraint minimisation problem and 

it is solved iteratively with a gradient based optimisation method. Unlike the variational 

DA methods, the sequential DA methods take account of the time evolution of WDS 

observations with the potential to estimate WDS state estimates over time. The 

sequential DA methodologies are deemed as ógood enoughô for online operational 

purpose although they are not perfect because of the uncertainties (or errors) involved. 

This section covers a selection of sequential DA methodologies based on empirical (or 

statistical) approach to solve WDS state estimation problems. However, both Barnes 

analysis scheme (Barnes, 1964) and Cressman objective analysis scheme (Cressman, 

1959) are not reviewed due to their inability to deal with large set of diverse 

observations and also Cressman objective analysis scheme discard observational 

error (Schlatter, 1988).   

 

The literature review of sequential DA methods in this section is primarily focused on 

the correction step. This section also considered the capability and limitation including 

implementation challenges and computational issues related to each reviewed DA 

method. Appendix B provides further theoretical details of each reviewed DA method.  

 

The DA methods that are considered in this section include: 

ǒ Kalman Filter method 

ǒ Extended Kalman Filter method 

ǒ Unscented Kalman Filter method 

ǒ Ensemble Kalman Filter method 

ǒ Particle Filter method. 

 

The correction step of each above-mentioned DA method is reviewed in section 2.3.2 

to 2.3.6 and then summarised in section 2.3.7.  
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2.2.2 Kalman Filter Method 

 

The Kalman Filter (KF) method (Kalman, 1960) aims to estimate the optimal state 

vector via linear stochastic process (Greg & Gary, 2001). The theoretical background 

of the KF can found in the literature written by (Welch & Bishop, 2006) and in Appendix 

B1 of this thesis. Assuming equations (3) and (4) represent a Gaussian linear system, 

the correction steps of the KF method in WDS context are as follows:  

 

●◄
╬  ●◄

█
 ╚◄◑◄  ╗◐◄

▬
        (3)  

 

where ╗ is the observation mapping operator that relate WDS observations to the 

predicted hydraulic states; ╚  is the Kalman gain; ◑ is the WDS observations vector; 

╟  and ╟ are the posterior and prior error covariance matrix respectively. The Kalman 

gain, ╚  is viewed as the weight factor based on the prior and observation error 

covariance matrix: 

 

╚◄ ╟◄
█
╗╣ ╗╟◄

█
╗╣  ╡◄         (4) 

 

where superscript Ὕ indicates the matrix is transposed and ╡ is the observation error 

covariance matrix. 

 

The KF method has been applied in a WDS section to estimate unknown roughness 

in a linear estimation problem (Todini, 1999) and water quality modelling (Schilling & 

Martens, 1986). Since the KF method is best suited to linear problems, Walski, et al. 

(2003) used it in a loop iteration to increase network resilience/guaranteed consumer 

demand due to nonlinear system of WDS. 

 

Kang and Lansey (2009) compared an iterative-KF method to the Tracking State 

Estimator (TSE) based on weighted least-squares scheme to estimate WDS states 

(nodal pressures and chlorine concentrations) in real-time. The iterative-KF method is 

used to overcome its limitation in a nonlinear system like WDS. The iterative-KF 

method and TSE quantified the uncertainties in demand estimates and predicted state 
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variables (pressures and chlorine concentrations). The quantified uncertainties were 

verified by Monte Carlo simulation. The results indicate flow measurements are better 

to estimate demands with high level of confidence compared pressure measurements. 

The results also show the TSE method performs well in a looped WDS network while 

the iterative-KF method performs well in a series WDS network.  

 

Jung and Lansey (2014) proposed a method that uses the KF method to detect pipe 

bursts when an operational change occurred. The results show that the proposed 

approach can be effective in burst detection with the aid of KF method. For further 

detailed summary of this paper, see page 51.  

  

The main issue with the KF method is the error covariance matrices must be derived 

at the initial time step. The observation error covariance matrix can be estimated based 

on the knowledge of the instrumental error variances while prior and process error 

covariance can be estimated based on the prior information of the state model. Such 

issue can make the KF method unsuitable for highly non-linear stochastic system like 

WDS. Hence, the KF method is expanded via Taylor series (Bertino, et al 2003; 

Evensen, 2003) to accommodate the non-linearity behaviour of the WDS. The 

expansion of the KF method is known as the Extended Kalman Filter (EKF) method. 

 

2.2.3 Extended Kalman Filter Method 

 

The Extended Kalman Filter (EKF) (Jazwinski, 1970) is the advancement of the KF 

method (refer to Appendix B2) to accommodate the non-linear system such as WDS.  

 

The state model, F and observation operator, H cannot be applied directly on a system 

with some non-linearity. This operator is approximated with tangent linear operators. 

 

The EKF method has been applied for real time calibration of water demand (Shang 

et al. 2006). The EKF method involved Autoregressive Integrated Moving average 

(ARIMA) (Box & Jenkins, 1976) which is used to forecast the water demand coefficients 

of a small WDS hydraulic model (92 nodes, 2 reservoirs, 3 tanks, 2 pumps and 117 

pipes). The EKF method is used to correct the predictions of water demand coefficients 
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with the aid of usually high number of observed flow rates and pressure heads. The 

authors show that the EKF method performance depends on the spatial error among 

the demand coefficients, forecast error, observation error and arbitrary sampling 

design.  

 

The application of the EKF method is deemed to be unstable in an observed system 

with large nonlinearities (i.e., WDS) (Hoteit, et al., 2005). Many researchers (i.e., 

Terejanu, 2008; Pauwels and DeLannoy, 2009) tried to address the instability issues 

by using higher-order terms of Taylor series to cope with high non-linearity of the 

observed system (i.e., WDS). Terejanu (2008) also found the state estimates can be 

biased due to a large variant of observation error. Hence, the Jacobian of the hydraulic 

network is approximated without other higher-order terms and is limited to the first-

order of Taylor series. Terejanu (2008) and Pauwels and DeLannoy (2009) show the 

EKF method can also neglect observation operator if the higher-order derivatives of 

Taylor series is used in the correction step. Evensen (2003) highlights the additional 

computational cost to use higher-order terms of the EKF method. Nevertheless, the 

EKF method is still capable of providing a good performance in term of improving 

hydraulic model state predictions despite its high computational cost. Due to the first 

order approximation of the EKF method, the method can introduce large errors in the 

corrected state estimates which lead to the divergence of the filter (Wan & van der 

Merwe, 2000). This flaw can be addressed by a DA method called Unscented Kalman 

Filter (UKF) in the next section.  

 

2.2.4 Unscented Kalman Filter Method 
 

The Unscented Kalman Filter (UKF) method (Uhlmann, 1995) was developed to 

address the limitations of the EKF method. The EKF method usually loses information 

concerning the state estimates when the EKF method tries to linearise an observed 

system (i.e., WDS). Therefore, the UKF method (refer to Appendix B3) uses an 

unscented transformation, minimal set points of sigma points (a deterministic sampling 

technique) to calculate the statistics of a random variable which undergoes a nonlinear 

transformation. These minimal set points of sigma points are devised via an empirical 

analysis of the state estimates (Zhang et al., 2009) which is mostly used for Gaussian 

distribution.  
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The UKF method is closely related to the EKF method but the differences between 

these two DA methods are: (1) their implementation/application approach, (2) 

computational cost and (3) the UKF method requires sigma points and an ensemble 

of predicted/observed WDS states to estimate the error covariance matrices. The UKF 

method can be applied to a non-linear system without the knowledge of the Jacobian 

matrix. It also has the ability to maintain the non-linearity of the system (Kreuzinger, et 

al., 2008). However, it is noticed that the UKF method does not improve the accuracy 

of state estimates but it reduces the underestimation of prior error covariance over time 

(Uhlmann, 1995). Hence, there is a little difference between the corrected state 

estimates from the UKF and EKF method.  

 

The main disadvantage of the UKF method is the cumulative of underestimated error 

covariance which can cause the filter to become overconfident over time resulting in 

underestimating the accuracy of state estimates. The other major disadvantages of the 

UKF are it is more computationally expensive compared to the EKF method 

(Kreuzinger, et al., 2008) and it is limited to non-linear systems that have Gaussian 

noise. Since the corrected state estimates are based on small set of sigma points, the 

hydraulic state estimates are not truly global approximation of the observed system 

(i.e., WDS). Due to the complex implementation of the UKF method, the Ensemble 

Kalman Filter method is usually preferred for hydraulic modelling of the WDS.  

 

2.2.5 Ensemble Kalman Filter Method 

 

The Ensemble Kalman Filter (EnKF) method (Evensen, 1994) is commonly used for 

spatial-temporal phenomena evaluation like ocean modelling (Evensen, 2009) and 

weather forecasting (Myrseth, et al., 2009). The EnKF method (refer to Appendix B4) 

is a suboptimal estimator which is suitable for nonlinear system with a large number 

of state variables. It was originally developed to overcome some of the problems 

associated with the EKF method.  

 

Unlike the UKF and EKF method, the EnKF method corrects the ensemble of forecast 

hydraulic state estimates individually without the need of covariance matrices or 
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integrating backward in time (Mandel, 2007; Evensen, 2009; Myrseth, et al., 2009). 

The principle of EnKF method is to approximate the state estimates (vector) and prior 

error covariance from the ensemble statistics ï equations (5) and (6): 

 

╒╠  
╨◄  Ⱨ◄

◐
 ╨◄ Ⱨ◄

◐╣

╝
         (5)  

 

╒╡
╩◄ Ⱨ◄

◑ ╩◄ Ⱨ◄
◑╣

╝
         (6)  

 

where ‘  and ‘ are the ensemble mean of hydraulic model predictions and the 

corresponding WDS observations respectively; ╒╠ and ╒╡ are the ensemble WDS 

hydraulic model predictions and the corresponding WDS observation error covariance 

respectively. 

 

The ensemble statistics are the nursed to calculate the Kalman gain via 

ὅ ὅ  ὅ . The major key issue with the EnKF method is the quantification of the 

covariance error matrices. The EnKF method relies on sampling design to generate 

ensemble hydraulic state estimates, hydraulic model predictions and the 

corresponding WDS observations. The most common method is the perturbed 

observations method (Burgers, et al., 1998). The perturbed observations method 

(Burgers, et al., 1998) involves adding random perturbations to both state vectors and 

WDS observations which introduces sampling errors (Evensen, 2004). The data 

perturbation is performed to prevent the underestimation of analysis error covariance 

(Chena, et al., 2013): 

 

The problem with the perturbed observations method is that it affects the prior 

knowledge between the state estimates which cause the EnKF method to diverge` 

(Sun, et al., 2009; Sakov and Oke, 2008; Anderson, 2001). Therefore, various 

deterministic ensemble filters are developed to overcome the limitations of the 

perturbed observations method. Most of the EnKF method variants combine the 

ensemble mean of corrected state estimates ï equation (7) with an analysis ensemble 

perturbation: 
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╧◄
╪  ╧◄

╬  ═◄
╬         (7) 

 

where ╧◄
╬ is the ensemble corrected state vectors; ╧◄ is the ensemble mean of the 

corrected state vectors; ═◄
╬ is the analysis ensemble perturbations matrix; 

 

The analysis ensemble perturbations matrix is derived from transformation of predicted 

ensemble perturbations through a transform matrix. The common variants of transform 

matrix are as follows (refer to appendix B4): 

1. Ensemble Square Root Filter (EnSRF) (Whitaker & Hamill, 2001);  

2. Ensemble Adjustment Kalman Filler (EAKF) (Andersons, 2001);  

3. Deterministic Ensemble Kalman Filter (DEnKF) (Sakov & Oke, 2008). 

 

The main advantage of the EnKF method and its variants is the speed of correcting 

the hydraulic state estimates compared to other gradient-based procedures (Tureyen 

& Onur, 2011) due to exclusion of prior error covariance evolution. The EnKF method 

does not cause the filter to diverge quickly like the KF method and EKF method in a 

system with high non-linearity. The perturbed EnKF method is preferred method to the 

squared-root based the EnKF method due to the easy implementation of the perturbed 

EnKF method.  

 

The disadvantages of the EnKF method and its variants are: (1) they only account for 

state forecasts error due to uncertain initial conditions; (2) the state estimatesô error 

due to state model deficiencies are not considered (Tippet, et al., 2003); (3) large 

number of ensemble member may be required to ensure the stability of the filter hence, 

increasing the computational cost and time; (4) the EnKF method Kalman gain can 

give little weigh to the residuals when the number of hydraulic state variables is greater 

than ensemble number (Myrseth, et al., 2009). An alternative method in dealing with 

the high nonlinearity of WDS is Particle Filter (refer to section 2.3.6.). 

 

2.2.6 Particle Filter Method 
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Particle Filter (PF) method is a Sequential Monte Carlo method that is capable of 

correcting the predicted state estimates (Doucet, et al., 2001). The main principle of 

the PF method is to use Bayesian formulae to correct predicted state estimates when 

the WDS observations become available via posterior probability distribution. The 

posterior probability distribution is calculated as follows: 

 

╟╧◄ȿ╩◄  
╟╩◄ȿ╧◄ ╟╧◄ȿ╩◄  

╟╩◄ȿ╩◄
       (8) 

 

where ὖ╩ȿ╧   is the probability of WDS observations given by state forecasts; 

ὖ╧ȿ╩  is the prior probability distribution of state forecasts given by the prior 

observations and ὖ╩ȿ╩  is the normalisation factor which can be expressed as 

ὖ᷿╩ȿ╧  ὖ╧ȿ╩ Ὠ●. 

 

Hutton, et al. (2010) highlighted that it is generally difficult to sample directly from the 

posterior probability distribution itself, hence, Sequential Importance Sampling (SIS) is 

used instead (Orhan, 2012). The idea of SIS is to use samples drawn from a proposal 

probability distribution. In other word, the PF method approximates the posterior 

probability distribution at previous time step (t-1) with the weighted set of particles. 

Unfortunately, there is a discrepancy between the posterior probability distributions at 

current time step and previous time step. To compensate for this discrepancy, the 

particle samples (state estimates) and associated weights are reduced to equation (9) 

and (10) respectively (Arulampalam, et al., 2002): 

 

╟╧◄ȿ╩◄  В ◌◄
░♯ ╧◄░

╝
░          (9)  

 

◌◄
░  ◌◄

░ ╟╩◄ȿ ╧◄
░         (10)  

 

where ύ  is the updated particle weight; ύ  is the particle weight at the previous time 

step; ╧ȿ╩  is the posterior probability distribution at time step, t; ὖ ╧ȿ ╧ ȟ╩  is 

the probabilistic state model (or transition probability distribution) and 

ὗ╧ȿ ╧ ȟ╩   is the proposal probability distribution. 
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The main advantage of the PF method is it does not require specific state estimates 

distribution form (Pauwels & De Lannoy, 2009) and it can deal with high number of 

particle samples. Having a large set of particle samples ensures the PF method 

produce sub-optimal state estimation. The potential advantage of the PF method over 

the EnKF method is that implementation within any model structure deemed to be 

easier. This is because the PF method is not required to correct state estimates every 

time step. 

 

The major disadvantage of the PF method is it estimates the distribution of the limited 

WDS observations at each time step. Therefore, the particle weights distribution can 

be skewed when both prior and observation variances are too high (Doucet & Adam, 

2008). When the drawn particle samples are not large enough, a resampling algorithm 

is required (Hutton, et al., 2012; Weerts and El Serafy, 2006). The aim of re-sampling 

particles is to overcome the PF method degeneracy. Kitagawa (1996) resample 

particle weights when the samples become highly non-uniform which can neglect the 

small-particle weights with stratified sampling and duplicate large-particle weights 

instead. This forces the samplings to focus more on high end probability and becomes 

dependent which give less information concerning the state estimates (Ching, et al., 

2006). The PF method can be re-sampled several times to make the particles 

completely independent which comes with high computational cost (Ching, et al., 

2006).  

 

The PF method has been applied in WDS by both Hutton et al. (2012) and Anjana et 

al. (2015) to solve their respective WDS problems. Hutton et al. (2012) applied the PF 

method to estimate the WDS states via demand coefficient correction while Anjana, et 

al. (2015) combined the PF method and a statistical technique, CUSUM to detect pipe 

bursts/leaks in a trunk main model respectively. Despite, both authors showed the 

potential of PF method in hydraulic modelling of WDS. The method is still not widely 

used to solve WDS problems and its application to account for uncertainty in WDS 

remains to be evaluated. Full theoretical details of PF method can be found in Appendix 

B5 
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2.2.7 Comparison of DA Methods 

 

A number of sequential DA methodologies have been described and reviewed in the 

previous section. Each DA method has its own capabilities and limitations, 

computational costs and benefits. Few of the DA methods analysed (i.e., KF method, 

EKF method) have been applied in water network to estimate WDS parameters or 

states (i.e., demand coefficients, pipe flows and nodal pressures). Table 2.3 

summaries the advantages and disadvantages of DA methodologies and their current 

application in hydraulic modelling of a WDS section. Table 2.4 provides the key 

summary of DA methods.  

 

There is no optimal DA method for near real-life hydraulic modelling of WDS. Among 

the reviewed DA methods, the KF and EKF method work well in a linear system or in 

a system that have small non-linearity. These DA methods are shown that they work 

reasonably well in a small-medium WDS section (trunk main or DMA). The EnKF 

method is developed to work in highly non-linear system and there are 2 variants of 

the EnKF method. They are as follows: (1) perturbed EnKF method and (2) squared-

root-based EnKF method (see Appendix B). The perturbed EnKF method is commonly 

used due to its simple implementation of the method compared to the squared-root-

based EnKF method. However, most of the EnKF methods are still at the research and 

development stage. The UKF and PF method have the potential to correct state 

estimates in non-linear system like WDS but at the expense of the higher 

computational cost. The performance between DA methods in WDS hydraulic 

modelling remains unknown.  

 

The evaluation of the DA methods should be based on these two points:  

1) Difficulty of implementing the DA algorithm.   

2) Ability to deal with highly non-linear system - WDS. 

 

It is clear that, among the reviewed DA method, the KF, EnKF and PF method are the 

possible candidates to correct the hydraulic model states. The state forecasts are 

corrected via the residuals between the hydraulic model predictions and the 

corresponding WDS observations along with other uncertainties. The uncertainties are 
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related to the state forecasts, hydraulic model predictions and the corresponding WDS 

observations. A comparison study between the KF method, PF method and EnKF 

method is required to review capability and limitations with a real-life hydraulic model 

and WDS observations. Based on the results, a DA method would be chosen for burst 

detection/localisation in WDS. 
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Table 2.3:  Summary of Data Assimilation Methods 

Data Assimilation 

Methods 

Suitability - 

Linear/Nonlinear 

system 

Model forecast Representation of Errors Computational cost 

Kalman Filter  

(Kalman, 1960) 

Linear system Deterministic 

model forecast 

Variance of instruments to represent 

observation covariance; guess the 

initial process and forecast error 

covariance 

Low 

Extended Kalman Filter 

(Jazwinski, 1970) 

A system with small 

non-linearity 

Deterministic 

model forecast 

Error covariance is derived via 

Taylor series. 

Medium 

Unscented Kalman Filter 

(Uhlmann, 1995) 

Linear and medium 

non-linear system 

Deterministic 

model forecast 

error covariance approximated by 

2L+1 sigma points 

Medium/High 

Ensemble Kalman Filter 

(Perturbed Observations 

Methods) 

(Evensen, 1994) 

Linear and high non-

linear system 

Ensemble 

estimates 

Ensemble Statistics ï sample 

covariance matrix 

Or 

Reduced rank approximation of 

squared root of covariance matrix 

High ï very high 

(depending on ensemble 

size) 

Particle Filter 

(Doucet, et al., 2001) 

 

Linear and high non-

linear system 

Ensemble 

estimates 

Approximated from proposal 

probability distribution (Sequential 

Importance Sampling)  

High ï very high 

(depending on number of 

particles) 
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Table 2.4: Comparison of Data Assimilation Methodologies and its Application to the WDS 

 

Data Assimilation 

method  

Advantages Disadvantages Application to WDS 

Kalman Filter 

(Kalman, 1960) 

ǒ Suitable for linear stochastic 

system models 

ǒ Good for tracking targets (i.e. 

spread of chlorine residual) 

ǒ Easy to implement. 

ǒ Low computation cost 

ǒ Model operator is assumed to 

be unbiased 

ǒ Unsuitable for non-linear 

stochastic system 

ǒ Kalman innovation can be 

ignored if the filter gets 

overconfident. 

ǒ Difficult to estimate the actual 

error covariance 

ǒ Assume no correlation error 

between the forecasts and 

observations 

Kang and Lansey (2009) applied KF 

to a small WDS model to estimate 

the demand coefficients and 

chlorine concentration in real-time 

with synesthetic data. Flow 

residuals are used to correct 

demands and chlorine concentration 

residual are used to correct chlorine 

concentration.  

Extended Kalman 

Filter 

(Jazwinski, 1970) 

 

ǒ Linearise system that has 

small nonlinearity. 

ǒ Low computation cost  

ǒ Model operator is assumed to 

be unbiased. 

ǒ EKF relies heavily on the 

addition of Gaussian random 

variable to stabilise the 

Shang, et. al (2006) used EKF to 

correct demand coefficients in real-

time with synesthetic data.  
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Data Assimilation 

method  

Advantages Disadvantages Application to WDS 

corrected forecast error 

covariance. 

ǒ Difficult to estimate the actual 

error covariance 

Unscented Kalman 

Filter 

(Uhlmann, 1995) 

ǒ Can maintain the nonlinearity 

of hydraulic system 

compared to the Extended 

Kalman Filter 

 

ǒ Model operator is assumed to 

be unbiased. 

ǒ UKF does not improve the 

accuracy of hydraulic states 

estimation. 

ǒ Cumulative of underestimated 

error covariance can cause 

filter divergence. 

ǒ Hydraulic state estimates are 

not truly global approximation 

due to small minimal sets of 

sample points. 

ǒ High computational cost 

because it resembles Monte 

Carlo sampling 

None  
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Data Assimilation 

method  

Advantages Disadvantages Application to WDS 

Ensemble Kalman 

Filter 

(Evensen, 1994)  

ǒ Derivation of tangent linear 

operator is not required as in 

EKF. 

ǒ Easy to implement. 

ǒ Good for highly nonlinear 

system. 

ǒ Posterior error covariance 

from previous time step is not 

required. 

 

ǒ Model deficiencies are not 

considered. 

ǒ May require high number of 

ensemble member to stabilise 

the EnKF method. 

ǒ Kalman gain can give little 

weigh to Kalman innovation if 

the ensemble of all forecast 

hydraulic state estimates are 

close to its ensemble mean.  

ǒ High computation time due to 

Monte Carlo sampling 

(ensemble statistics). 

None 

Particle Filter 

(Doucet, et al., 2001) 

ǒ Good for tracking targets (i.e. 

spread of chlorine residual) 

ǒ Good for highly nonlinear 

system. 

 

ǒ Particle weights distribution 

can be skewed when both 

forecast and observation 

variance is very high. 

ǒ PF diverges quickly, hence, PF 

requires resampling to stabilise 

Anjana et al. (2015) proposed the 

use of a Particle Filter (PF) based 

technique for the detection of pipe 

leaks in water pipelines. The 

developed PF-based detection 

model use the standard SPC-



74 

 

Data Assimilation 

method  

Advantages Disadvantages Application to WDS 

PF method at the expense of 

higher computational cost 

ǒ High computation time due to 

Monte Carlo sampling  

CUSUM chart was able to detect 

anomalies in the system. This 

technique was applied to a real-world 

network in Mandya (Karnataka, 

India). It successfully detects a pipe 

leak in the real network (trunk-main 

model). Hence the performance of 

the technique in a complex DMA in 

real-time is unknown. This method 

shows some potential for online 

detection burst. 
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2.3 SUMMARY 

 

This chapter provided a review of literature related to the WDS burst detection and 

localisation techniques. It also provided a review of data assimilation methods that 

could be or already applied in the WDS. Section 2.1 provides brief introduction and 

reveal the purpose of the literature review. In Section 2.2 the papers dealing with burst 

detection and localisation technique in WDS with an emphasis on applications of 

hydraulic techniques were reviewed. Section 2.3 reviewed WDS data assimilation 

techniques.  

 

The main conclusions can be drawn from the literature review in Section 2.2 are as 

follows: 

ǒ Two basic types of automated WDS pipe bursts/leaks detection models seem 

to exist. The data-driven based techniques analyse the signalsô values from a 

SCADA system to detect WDS pipe bursts whilst model-based techniques make 

use of both WDS hydraulic model and meters/other data for automated WDS 

pipe burst detection.  

ǒ Most of the hydraulic detection and localisation techniques are developed for 

offline problems including WDS pipe bursts detection. Few burst detection 

techniques such as statistical/AI-related techniques can be used to detect and 

locate WDS pipe bursts in the near real-time. 

ǒ The application of data-driven techniques performed reasonably well with real-

life WDS data for detection purposes but was rarely used for WDS pipe burst 

localisation. However, these techniques can become redundant / difficult to use 

when there is a WDS configuration change (i.e. status of valves/pumps, 

changes or more permanent changes are introduced, such as rezoning) or 

system load (i.e. demands) changes substantially. 

ǒ Some model-based techniques such as negative pressure-based and transient-

based techniques can be problematic in a real-life WDS due to a large number 

of noisy WDS observations and high frequency of observed data required. In 

addition, accurate WDS transient models still do not seem to exist given the 

complexity of transient phenomena modelled in the network context. While other 

model-based techniques in the literature such as Sousa et al. (2015), Anjana et 



76 

 

al, (2015) have not been tested/validated on complex real-life WDS because 

they were developed based on simple water networks or pipelines studied under 

laboratory conditions. Noise-free artificial 'observedô data is often used in related 

case studies. 

 

The above conclusions illustrate that existing burst detection techniques from literature 

are not perfect. Real-life WDS challenges still present a significant barrier for a number 

of techniques presented. Despite some advantages of data-driven burst/leak detection 

techniques (see above), a hydraulic model-based technique still seems to be a viable 

alternative, for both detecting and locating pipe bursts/leaks in the near real time in a 

WDS.  

 

It is widely known that model-based techniques make use of the offline calibrated 

hydraulic models which can deal with changing WDS configuration or load but only up 

to a point, as they make use of fixed calibration parameter values that were obtained 

prior to model running in near real-time. Hence, a novel detection and localisation 

technique, an online hydraulic model is required to overcome the above limitations by 

using which constantly adapts to changing conditions in the network based on 

incoming observations. The online hydraulic model would comprise of a combination 

of techniques including a state estimation technique that considers model and/or data 

uncertainties.  

 

The novel online hydraulic model technique should be able to perform a near real-time 

detection and localisation of WDS pipe bursts in a reliable and timely manner within a 

DMA. Such technique can help WCs to reduce the water losses from a WDS, improve 

WCs SIM score. It can also help WCs to response quickly to WDS pipe bursts in the 

near real-time and facilitate appropriate interventions and/or repairs.  

 

From the review of data assimilation methods in Section 2.3, it can be concluded that: 

ǒ DA method has become a popular mathematical tool for state estimation in 

many discipline however, its application in the water industry or research has 

been so far limited. 
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ǒ An adaptation of ensemble-based DA method has gained popularity in the 

WDS-related research to do deal with WDS non-linear hydraulic relationship 

such as the PF method. 

ǒ Application of DA methods in WDS has been so far limited predominantly to 

simple and small WDS section, often with artificial observation data.  

 

The number of DA methods applied to solve WDS state estimation is scarce compared 

to other discipline due to lack of good model or poorly calibrated model. The lack of 

research in the field of online hydraulic model based on a DA method applied for near 

real-time WDS modelling especially for burst detection and localisation is apparent, 

which creates the grounds for the work addressed in this thesis.  

 

The most commonly used DA methods in hydraulic engineering-related field are the 

KF method, EnKF method and PF method. No research papers have so far compared 

the performance of these methods on a real-life WDS model and its respective 

observed data. The next chapter overcomes this by analysing the above three DA 

methods which are integrated with a suitable demand forecasting models to form three 

respective online WDS hydraulic models. The performances of these three models are 

compared on a real-life case study in Chapter 4, including comparison to an offline 

hydraulic model performance. The best performing online hydraulic model is then 

selected to develop an online hydraulic model for pipe burst detection and localisation 

in Chapter 5. 
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3 DATA ASSIMILATION METHODOLOGY 

3.1 INTRODUCTION  

 

The application of DA methods in hydraulic modelling of WDS is still at research and 

development stage. The DA methods are commonly in other disciplines such as 

meteorology, oceanography, hydrology and climatology (Evensen, 2003; van Leeuwen 

2009). The DA method is based on the Bayesian statistical framework including three 

main components: (1) a state model forecasts (i.e., WDS states/WDS model 

parameters such as water demand), (2) observation operator, (a numerical model 

which map state model forecasts to the corresponding WDS observations) and (3) 

probability density function of the errors of hydraulic model predictions and their 

corresponding WDS observations. 

 

The potential benefits of utilising online hydraulic modelling of WDS include reducing 

the operational costs and optimising the operational performance (Rao & Salomons, 

2007). Davidson and Bouchart (2006) and Preis et al. (2010) highlighted online 

hydraulic modelling of WDS provide a greater understanding of system states in the 

near real-time. Therefore, online hydraulic modelling of WDS can be repeated for a 

given time-period, to identify optimal control strategies (Broad et al. 2010). To ensure 

the DA method perform well in any system including WDS, Hutton et al. (2011) 

revealed the principal sources of uncertainty: model structural uncertainty (hydraulic 

model), parameter uncertainty (i.e, water demand, pipe roughness), and data or 

measurement uncertainty (i.e. flow and pressure). Hutton et al. (2011) further 

explained that the impact of not dealing with the above-mentioned uncertainties can 

potentially lead to poor model performance or decision. In a WDS hydraulic model, 

water demand can be argued to be the most significant source of uncertainty that can 

affect quality of WDS model predictions (Herrera et al., 2010; Preis et al., 2010).   

 

This chapter presents three online hydraulic models to quantify and reduce uncertainty 

for WDS state estimation. The three selected DA methods are the KF method, EnKF 

method and PF method. These methods are selected due to their good performance 

in other disciplines (meteorology and hydrology), their ease of algorithm 
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implementation and the fact that they represent well a range of DA methods in terms 

of various characteristics such as computational efficiency and accuracy. 

 

The chapter is organised as follows:  

ǒ Section 3.2 explains the difference between the offline and online hydraulic 

modelling; 

ǒ Section 3.3 describes the concept behind the online hydraulic modelling of the 

WDS; 

ǒ Section 3.4 introduces the first online hydraulic model, KF method;  

ǒ Section 3.5 introduces the second online hydraulic model called the EnKF 

method; 

ǒ Section 3.6 introduces the third online hydraulic model, PF method; 

ǒ Section 3.7 outlines the metrics used to compare the performance of an offline 

hydraulic model and three online hydraulic models; 

ǒ Section 3.8 summaries the chapter findings.  

 

3.2 OFFLINE VS ONLINE HYDRAULIC MODELLING 

 

The offline hydraulic modelling of the WDS make use of historical time series 

flow/pressure data to calibrate the hydraulic model. Once calibrated this way, the 

offline model is used to conduct strategic/contingency planning of the WDS and also 

for pipe bursts/leaks detection. It can also be used to predict future WDS status, flow 

rate and pressure for network resilience or development planning. The offline 

calibrated hydraulic model may not represent well the current state of the WDS for 

operational purposes especially in emergency events (Preis, et al., 2011). The reason 

for this is that once calibrated, offline model is assumed to represent WDS reality well 

and is used accordingly, i.e. without being modified for often prolonged periods of time 

(i.e. until next use or re-calibration which may be months or years away).  

 

Figure 3.1 shows the schematic diagram of an offline and online hydraulic models.  
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Figure 3.1: The schematic diagram of hydraulic model runs either (a) without a DA 
method and (b) with a DA method. 

 

The key difference between an offline and online hydraulic model is in the use of DA. 

Unlike the offline model, the online hydraulic modelling make use of the latest WDS 

observations along with the uncertainties to correct the predicted WDS parameter and 

system states at each time step via a DA method (refer to Figure 3.1). 

 

3.3 ONLINE HYDRAULIC MODELLING CONCEPT 

3.3.1 Data Assimilation Methods 

 

The online hydraulic model aims to predict the hydraulic states of the WDS in the near 

real-time and then correct the predictions when the observations become available. 

This online hydraulic modelling of the WDS involves a combination of the conventional 

hydraulic model (such as e.g. EPANET 2.0), a Water Demand Forecasting Model 

(WDFM) and a DA method. The main reason for employing a DA method is its ability 

to quantify hydraulic model and observationsô errors. The DA method corrects 

hydraulic model states by optimally combining model predictions with the 
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corresponding WDS observations. This process is regarded as predictor-corrector loop 

process. The steps of online hydraulic modelling are as follows: 

1. State prediction: this step is where the WDFM is run to forecast water 

demands for the next time step. These forecasted water demands are then used 

to drive the hydraulic model from the known initial system state to the next 

hydraulic state. The outputs from the hydraulic simulation are pipe flow rates, 

tank levels and nodal pressures in the network.  

2. State correction:  The DA method (i.e., KF/EnKF/PF method) is used to correct 

both water demands and WDFM parameters predicted in the previous step. This 

method is driven by the difference between predicted WDS states and the 

corresponding WDS observations (coming from flow/pressure meters) at the 

current time step. The corrected water demands (obtained by correcting the 

WDFM parameters) are then inserted back into the hydraulic model to obtain 

the optimal WDS states. 

 

Note that in the case where WDFM is not used, the correction step may involve 

updating demands (and other) hydraulic model inputs directly. The above prediction 

and correction steps are repeated at each time step during the online hydraulic 

modelling. 

 

The starting point for online hydraulic modelling is the offline calibrated hydraulic model 

whose inputs/parameters are then continuously updated. It is anticipated that, when 

compared to the offline model, this should result in improved online hydraulic model 

predictions that are closer to field observations. The online hydraulic model can be run 

for successive weeks or longer, depending on the purpose of the simulation. 

 

The next section introduced the water demand forecasting model used in this work. 

 

3.3.2 Water Demand Forecasting Model 

 

WDFM is an integral part of the online hydraulic model (refer to Figure 3.1). WDFM is 

commonly used by WCs around the world to forecast hourly or weekly demand to 

manage the operation of WDS efficiently. Majority of WDFM researchers such as 
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Herrera et al. (2010) and Adamowski and Karapataki (2010) identified water demand 

as the critical parameter to predict the WDS behaviour. Hence, vast majority WDFMsô 

parameter include at least element of water demands. WDFMs can be found in 

hydraulic engineering articles such as ARIMA (Box & Jenkins, 1976), M5 Model tress 

(Quinlan, 1992), Artificial Neural Network (Mounce, 2005), Multi-Linear Regression 

(MLR) analysis (Adamowski, 2008) and Time series analysis (Adamowski & 

Karapataki, 2010). Other models can be found in Herrera et al. (2010). 

 

In this thesis, a simple WDFM is chosen after an experimentation of WDFMs based on 

seasonal Autoregressive Integrated Moving Average (ARIMA) and MLRs. The goal of 

the WDFM experimentation was to find an appropriate WDFM for this thesis. Hence, 

the experimentation involved developing several WDFMs using 80% of historic water 

demands and testing on the remaining 20% of data. The MLR-based model is selected 

because it predicts water demands more accurately when compared to the ARIMA-

based WDFM. This selection is also supported by Adamowski (2008). The MLR-based 

WDFM is capable of forecasting the water demand every time step (i.e., every 15 

minutes) for a fixed lead time forecasting horizon (e.g. 15 minutes). The forecasted 

demand is a function of demands from previous time steps as follows: 

 

▀◄ = В ◌◄░▀◄░
▪
░          (11)  

 

where ὲ is the number of demand model parameters; ▀◄░ is the water demand from 

time step t-i, Ὠ is the forecast demand at current time step and ◌◄░ is the associated 

weight; i is index denoting previous time steps (e.g. t-1 denotes 15 minutes before 

current time assuming that time step is 15 minutes).  

 

In the UK, WCs organise their WDS into multiple District Metered Areas (DMAs). The 

DMA is a defined area of the WDS isolated by valves and monitored by flow meters at 

all entry and import/export points. The DMA water demand can be estimated from the 

quantity of water entering and leaving the DMA plus corresponding changes in tank 

volumes (if any). The recorded DMA inflows and/or outflows are transmitted to the 

Supervisory Control and Data Acquisition (SCADA) database. The MLR-based WDFM 
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uses flow data from the SCADA database to forecast DMA water demands and to 

calibrate the WDFM parameters.    

The steps to develop the MLR-based WDFM is summarised in Figure 3.2.  

 

 

 Figure 3.2: The flowchart of developing the water demand forecasting model. 

 

Prior to the first step, the WDFM retrieves ódô full days of a DMA historic flow data from 

the Time Series database. The ódô full days of past flow data starts from 00:00 hour to 

23:45 hour. Hence, the WDFM collates historic flow data starting from a time step, 

23:45 hour of the previous day to the 23:45 hour of the last ódô day. The ódô days of 

historic flow dataset is then transferred to first step of the WDFM.  

 

The first step estimates the ódô days of DMA water demands using the DMA boundary 

flow meters (i.e. historic DMA inflows and outflows) and tank level changes (if tank 

exists in the DMA).  

 

The second step determines the sets of independent variables (demands at different 

points in the past) for the MLR-based WDFM. In order to find the optimal lag time steps, 
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the coefficient of correlation, rd
 shown in equation (12) is used here. The dependent 

variable of the MLR-based WDFM is the most recent water demand in the ódô days of 

historic water demand dataset (obtained from step 1). It is denoted here as the ócurrentô 

water demand, dt. The independent variables are past demands from different lag time 

steps (i.e., dt-1 or dt-96, or dt-674). A rd
 value that is close to 1 shows a strong linear 

relationship between the between the two variables. The correlation coefficient 

measures the strength of the association between the two water demand variables is 

as follows:  

 

ἺἬ  
ἶВἬἼ ἱἬἼ ἱ ВἬἼ ἱВἬἼ ἱ

ἶВἬἼ ἱ ВἬἼ ἱ  ἶВἬἼ ἱ ВἬἼ ἱ

      (12)  

  

where rd is the water demand correlation coefficient; n is the number of points in the 

observed dataset; i is the increment factor; d is the water demand; t1 and t2 are time 

lag 1 and 2 respectively; dt1 is the water demand at ócurrentô time step while dt2 is the 

water demand dataset at ót2ô time step. ót2ô can be water demand from the previous 

time step (i.e, 1 day ago (t-96), day+15 minutes (t-97), week (t-672) assuming the 

time step interval of 15 minutes). 

 

The third step develops several MLR-based WDFM for the studied WDS using 

independent variables identified in step 2. After the formation of the MLR-based 

WDFMs, each forecasting model is calibrated using part of the observed demand data. 

The Maximum Likelihood Estimation (MLE) method (Andersen, 1970) is used to obtain 

the values of each WDFMôs respective weight coefficients. 

 

The final (fourth) step evaluates several MLR-based WDFMs created in step 3 and 

identifies the best performing WDFM. In order to review their forecasting performance 

of each developed MLR-based WDFMs, a different period of the observed demand 

data (test datasets) is used. This observed demand dataset is not part of the dataset 

used to develop WDFMs. The best performing WDFM is selected based on the highest 

correlation coefficient value obtained between the WDFM inputs and outputs. 
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The WDFM is recalibrated periodically in near real-time. This is done when the moving 

average of normalized DMA demand error between the estimated and corrected 

demand is above a predefined threshold value. The moving average value is the mean 

of normalized DMA demand errors calculated over a sliding window size of a selected 

length (i.e., 4, 48, 96 time steps). Therefore, the lowest value among the sum of 

normalized DMA demand errors for different window sizes is used to determine the 

optimal window size. This is to minimise parameter risk and model risk due to arbitrary 

small and large window size respectively. The threshold value is defined as the 

average of normalized DMA demand errors (i.e. differences between the estimated 

and corrected demands). 

 

3.3.3 Hydraulic Model  

 

In this work, EPANET 2.0 is used as a WDS hydraulic model. This software tool is 

developed by the United State Environmental Protection Agency (U.S. EPA) to solve 

nonlinear hydraulics of a WDS. The EPANET uses the Global Gradient Algorithm 

(GGA), a variant of Newton-Raphson method proposed by Todini and Pilati (1988) to 

perform hydraulic analysis of any WDS section (refer to Appendix A1 for further 

details). It is widely used for demand analysis, flushing event or leakage detection in a 

WDS section, strategic and contingency planning.  

 

The nonlinear hydraulic relationships of WDS are defined by the conservation of mass 

and energy. They are written in a form of nodal flow continuity and pipe head loss 

equations. The nodal flow continuity equation is as follows (Kang & Lansey, 2009): 

 

В ╠▬▬ ɴ ╙░▪ȟ▪  В ╠▬▬ ɴ ╙▫◊◄ȟ▪ ▲▪       (13)  

 

where subscript n and p are denoting node and pipe respectively;  ὗ  are the flows of 

pipes connected to node n; ή is nodal demand;  ὐȟ and ὐ ȟ are the set of pipes 

going into and coming out from a node respectively. 

The pipe head loss equation is as follows: 
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╗  ╗  ▐╛ȟ▬         (14)  

 

where Ὄ  and Ὄ  are the total energy at upstream (1) and downstream (2) nodes 

respectively;  Ὤȟ is the pipe headloss which calculated via Hazen-Williams formula: 

 

▐╛  ╚◊
╠

╒╗╦

Ȣ ╛

╓Ȣ
        (15)  

 

where D, L and CHW are diameter, length and Hazen-Williams roughness respectively; 

and ὑ  is a dimensionless constant. 

 

Hydraulic model pipe flow and nodal pressure vary at each time step due to changing 

demands and fixed nodal head (i.e., tank condition) via a quasi-dynamic analysis (also 

known as Extended Period Simulation) in the EPANET model. 

 

The next three sections provide details of three online hydraulic models considered in 

this thesis. 

 

3.4 ONLINE HYDRAULIC MODEL #1: KALMAN FILTER METHOD  

 

The first online hydraulic model considered is the KF method. The KF method is 

considered in this work as it represents the conventional DA method with widespread 

use in many areas of engineering. The standard KF method requires linear relationship 

between system states and parameters being corrected which, obviously, is not the 

case with WDS. Having said this, the WDS hydraulics are not that much non-linear 

with key, near quadratic non-linearity arising from the head loss equation (refer to 

equation  (15)). Given this, in the work conducted here, the KF method is still used 

but after being modified to address the above nonlinearity.  

 

The detailed theoretical background of the KF method is described in Appendix B1. 

The hydraulic state residuals between the predicted and observed states (i.e., flow 

rates, pressures) are used to correct the model state vector (i.e., forecasted DMA water 

demands) via the KF method and it can be expressed as:  
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●◄ȟ░
╬  ●◄ȟ░

▬
 ╚◄ȟ░ ◑◄ ╗●◄ȟ░

▬
      (16)  

 

where subscript t and i are the current time step and iteration step respectively, 

superscript c and p are the corrected and predicted value;  ●ȟis the corrected state 

vector (demands and tank levels); ●ȟ is the corrected state vector from the previous 

iteration step); ╚ȟ is the Kalman gain; ◑ is the WDS observations (i.e., observed flow 

rates, tank levels) and H is the observation operator which converts the model states 

(i.e., demands, tank level) to the WDS observations (i.e., flow rates, pressure, tank 

levels). 

 

The standard Kalman gain ╚ȟ (refer to equation (3)) is in literature review is modified 

to equation (17). This is to consider the nonlinearity of the WDS. The modified Kalman 

gain is calculated as: 

 

╚◄ȟ░ ╟◄ȟ░
▬
╗╣╗╟◄ȟ░

▬
╗╣ ╡◄        (17)  

 

where ╗ is the observation operator that maps the predicted water demands to the 

corresponding WDS flow observation space; ╗╣ is the transposed observation 

operator; ╟ȟ is the prior error covariance matrix and ╡ is the observation error 

covariance matrix; 

 

The prior, observation and process error covariance matrix are estimated from the 

following equations: 

 

╟◄ȟ   ░
▬

╟◄ȟ░
╬  ╟◄ȟ   ░  

╠
        (18)  

 

╡◄ ► ◑◄           (19)  

 

╟◄ȟ░
╠ ▬ ●◄ȟ░

▬
           (20)  

 

where ╟ȟ    is the prior error covariance matrix; ╟ ȟ    is the posterior error covariance 

matrix at the previous time step, t-1; ╟ȟ    is the posterior error covariance matrix at 
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the current time step, t;  ╟  is the process error covariance matrix; ◑◄ is the WDS 

observation (i.e. flow rate); ὴӶ is the moving average of normalised residual error 

between the WDS predictions and the corresponding WDS observations and ὶӶ is the 

moving average of normalised residual error between the WDS corrections and the 

corresponding WDS observations. 

 

The main advantage of using moving average of normalised residual data, ὴӶ and ὶӶ is 

to reduce the impact of anomalous residual errors between observed and 

predicted/corrected values on state estimation. The anomalous residual data often 

occur when there is an under/over predicted value or anomalous observation. This 

either reduces or increases the weight of Kalman gain quicker during iteration hence 

reducing the number of iteration steps. Whilst the error covariance matrix would make 

the weight of Kalman gain close to 1 at every iteration step regardless if the observed 

data is anomalous or predictions are under/over-estimated. 

 

The diagonal element of the observation and process error covariance are calculated 

using equations (18) and (19) respectively while the off-diagonal terms are zero. The 

posterior error covariance matrix is calculated as: 

 

╟◄ȟ   ░
╬ ╘  ╚◄ȟ░ ╗╟◄ȟ   ░

▬
        (21)  

 

where ╘ is the identity matrix. 

 

Equations (18) to (21) are used iteratively until all state errors (demand errors) between 

the corrected demands from the current and previous iteration is approaching zero (or 

reached a defined maximum number of iterations). This is because of the non-linear 

hydraulic relationship. The final state estimates in equation (16) are taken as the 

corrected state vector. At the initial iterative step for each time step, ╟ȟ  is a zero 

matrix while the diagonal element of ╟ȟ    is the product of average relative state error 

and state vector.  

 

The above modified KF method can be regarded as an iterative KF method and can 

be implemented for successive linearisation at each time step.  
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3.5 ONLINE HYDRAULIC MODEL #2: ENSEMBLE KALMAN FILTER METHOD 

 

The Ensemble Kalman Filter method (EnKF) (Evensen, 1994) is a suboptimal 

estimator which corrects the ensemble of state vector (demands) without the need of 

observation operator and covariance matrices. The theoretical background of the 

EnKF method is described in Appendix B4.  The chosen variant of the EnKF method 

is perturbed EnKF method (Burgers, et al., 1998). The perturbed EnKF method is used 

in this thesis due to its relatively simple implementation and, at the same time, ability 

to achieve good prediction accuracy (Sun, et al., 2009). As noted by the latter authors, 

the perturbed EnKF method require a smaller ensemble size compared to other EnKF 

method variants such as Singular Evaluative Interpolated KF (SEIK) or Local 

Ensemble Transform KF (LETKF). Even though both SEIK and LETKF outperform the 

perturbed EnKF method in terms of forecasting accuracy and state corrections, both 

SEIK and LETKF methods also require more complex algorithms and larger ensemble 

sizes resulting in increased computational times. When compared to other inverse 

methods such as general Least-Square or MLE, the perturbed EnKF corrects the WDS 

states estimates without the need to do several iterations of model state correction at 

each time step. Hence, the perturbed EnKF method is preferred variant of the EnKF 

method in this thesis. Further details of the EnKF variants can be found in Appendix 

B5. 

 

The correction step of the perturbed EnKF method is as follows: 

 

╧◄
╬  ╧◄

▬
 ╚◄ 
●◑ ╩◄ ▄ ◄ ╗╧◄

▬
      (22)  

 

where ▄ contains artificial random noise and the general procedure of calculating 

Kalman gain is: 

 

╚◄
●◑  ╒◄

●◑ ╒◄
◐◐
 ╒◄
◑◑          (23)  

The ensemble statistics, mean and covariance are estimated as: 

 

╒◄
●◑  

╔◄ȟ●╔◄ȟ◑
╣

╝
          (24)  
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╒◄
◐◐

 
╔◄ȟ◐╔◄ȟ◐

╣

╝
          (25)  

 

╒◄
◑◑  

╔◄ȟ◑╔◄ȟ◑
╣

╝
          (26)  

 

╔◄ȟ●
╔◄ȟ◐
╔◄ȟ◑

 

╧◄
▬
 Ⱨ◄ȟ● 

 ╗╧◄
▬

 Ⱨ◄ȟ◐
 ╩◄   Ⱨ◄ȟ◑

        (27)  

 

where N is the ensemble number; ╧╬ and ╧
▬
 are the state ensemble matrix; ╩ is the 

ensemble of WDS observations; ╚  is the Kalman gain for correcting the state 

ensemble matrix; ╒  is the  cross error covariance of ensemble state estimates and 

WDS hydraulic model predictions, ╒  is the WDS hydraulic model predictions error 

covariance; ╒   is the WDS observations error covariance; ╗ is the observation 

operator; T  is the transpose of  the designated matrix; ╔ȟ, ╔ȟ and ╔ȟare the 

ensemble error of model state estimates, WDS predictions and the corresponding 

observation errors respectively; ‘ȟ, ‘ȟ and ‘ȟ are the ensemble mean of the model 

state, hydraulic model prediction and the WDS observation respectively. 

 

It is also important to notice the observation operator, ╗ in equation (17) first the model 

states space to the WDS observation space via a distributed hydraulic model. Then 

extract the hydraulic model predictions (i.e., flow rates, pressures or tank levels) at the 

corresponding WDS observationsô location. The difference between the extracted 

hydraulic model prediction and the corresponding WDS observation is used to correct 

the model states, ╧
▬
. The corrected model states, ╧╬ is then inserted into the 

distributed hydraulic model to be obtained the corrected WDS states (possibly optimal 

WDS states).  

 

To further reduce the computational time of the EnKF method at each time step, the 

mean of ensemble corrected model states and corrected WDS states are stored in a 

database. Therefore, the model state forecasts are based on the historic mean of the 

corrected model states. The model state forecasts are then perturbed. The ensemble 

model forecasts are propagated forward to the next observational time step via a 

distributed hydraulic model, hence equations (22) to (27) are repeated.  
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3.6 ONLINE HYDRAULIC MODEL #3: PARTICLE FILTER METHOD 

 

The Particle Filter (PF) method (van der Merwe, et al., 2000) makes use of a genetic 

type mutation selection sampling technique along with a set of particles (samples) to 

correct model state predictions. The particles are generated from the proposal 

distribution without requiring assumptions relating to the model state distribution. The 

particles represent the posterior distribution of WDS process given noisy and/or partial 

WDS observations. The theoretical background of the PF method is described in 

Appendix B5. 

 

The PF method is chosen in this thesis due to its ability to approximate the posterior 

distribution via an empirical distribution (Jardak, et al., 2013) . Secondly, in the WDS-

related literature, the performance of PF method has not been compared to both KF 

and EnKF method on the same case study.   

 

The central concept of the PF method is to approximate the posterior distribution of 

model state estimates (╧) when WDS observations become available:  

 

╟╧◄ȿ╩◄ ╟╩◄ȿ╧◄╟╧◄ ȿ╩◄         (28)  

 

where ὖ╧ȿ╩  represents the likelihood of the current observations, given the model 

states; ὖ╩ȿ╧ ὖ╧ ȿ╩  is the prior distribution of model states based on the 

WDS observations at the previous time step (╩ ). 

 

The posterior distribution is represented by an ensemble of particles (model state 

estimates) with their associated weight: 

 

╟╧◄ȿ╩◄ В ◌░♯╧◄  ╧◄
░╝▬

░        (29)  

 

where  is the Dirac delta function, the superscript i is the particle index, and the sum 

of weights is equal to 1. 
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When the number of particles is large, the PF method approaches the optimal 

posteriors estimates (Hutton, et al., 2012). The Sequential Importance Sampling (SIS) 

is used to update the associated particle weights. This procedure is commonly used 

due to the general difficulty to sample directly from the posterior distribution. Therefore, 

the particles are then drawn from a proposal distribution ὖ ╧ȿ ╧ ȟ╩  which leads to 

the following recursive weight update as each observation is assimilated, derived from 

Bayesô equation (refer to equation (8)) (Arulampalam, et al., 2002). 

 

◌◄
░  ◌◄

░  
╟╩◄ȿ ╧◄

░╟ ╧◄
░ȿ ╧◄
░

╟ ╧◄
░ȿ ╧◄
░ ȟ ╨◄

░        (30)  

 

The proposal probability density (refer to equation (30)) is used as the proposal density, 

which simplifies the weight update (van Leeuwen, 2009): 

 

◌◄
░  ◌◄

░  
╟╩◄ȿ ╧◄

░

В ╟╩◄ȿ ╧◄
░╝▬

░  
        (31)  

 

where the superscript i is the particle index; subscript t, is the time step index; w is the 

associated weight; Np is the number of particles; ╟╩◄ȿ ╧◄
░ is the likelihood of the 

current observations, given the model states;  

 

To apply PF method in the WDS context, the conditional probability of the WDS 

observations given the model states is often assumed to be Gaussian (Salamon & 

Feyen, 2010). Hence, normal distribution is chosen to reflect the forms of uncertainty 

present in the model: 

 

╟╩◄ȿ ╧◄
░  

ⱭЍ Ⱬ
▄●▬

 ╗╧◄
░  ╩◄
Ɑ        (32)  

 

where „ is the standard deviation of the observation error.  

 

After the propagation of the ensemble of particles (model state estimates), equations 

(31) and (32) are applied when a collection of WDS observation become available. The 

product sum of the particle weights and their associated state predictions is assumed 

to be the optimal estimate of model states: 
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●◄  В ◌◄
░ ╧◄
░ 

╝▬
░          (33)  

 

The optimal estimate of model states (corrected model states) from equation (33) is 

then inserted into the distributed hydraulic model to obtain the WDS states. Lack of 

WDS state modification leads to filter degeneracy, where the models provide a poor 

approximation of the posterior distribution. van Leeuwen (2009) highlights the larger 

weights are duplicated at the expense of poorer performing particles and this causes 

the filter to degenerate from the observations. 

 

To overcome the PF degeneracy, the Stochastic Universal Re-sampling (SUR) is 

applied to re-sample particles (Salamon and Feye, 2010; van Leeuwen, 2009; Hutton 

et al. 2011). The SUR is found to be effective in offsetting the PF degeneracy issue 

and sample impoverishment issue that occur during the particle re-sampling. 

 

The resampling of the particles follows four steps below: 

1. Sort the particle weights in ascending order. 

2. Choose a random number from a uniform density [0,1/ Np]. 

3. Starting from the random number, np segments with length 1/Np are laid on the 

line [0,1].  

4. Choose a particle when the end of a line segment falls in the particleôs weight 

bin. 

 

The above SUR method is applied at every time step to ensure the filter do not 

degenerate. 

 

3.7 ONLINE HYDRAULIC MODEL COMPARISON METRICS 

 

The three online hydraulic models introduced above are compared on a real-life case 

study in the next section with the aim to decide which online model will be used for 

real-time burst detection and location. To do this, two performance metrics are defined 

here.  
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The first performance metric is the Mean Absolute Error (MAE) which measures the 

closeness of hydraulic model predictions to their corresponding WDS observations. It 

is arguably one of the most popular performance metric and is calculated as follows: 

 

╜═╔  
▪
В ȿ●◄  ◐◄ȿ
▪
◄         (34)  

 

where n is the number of data set; t represents time step index; ὼ is the predicted 

WDS hydraulic model states and ώ is the system observations.  

 

The second performance metric is the coefficient of determination (R2) which describes 

how well a regression line of predicted hydraulic states fits a set of observation data. It 

ranges between 0 and 1 where 1 indicates that hydraulic model predictions match the 

corresponding WDS observations perfectly and 0 indicates the opposite. The equation 

of the coefficient of determination to measure variability of the data set is:  

 

╡  
В ◐◄  ◐◄◄

В ◐◄  ●◄◄
         (35)  

 

where n is the number of data set; t represents time step index; ὼ is the hydraulic 

model predictions; ώ is the mean of the WDS observations and ώ is the WDS 

observations.  

 

3.8 SUMMARY 

 

After introduction (section 3.1), this chapter describes and contrasts the concepts of 

offline and online hydraulic models in the WDS context (section 3.2). This is followed 

by the description of the WDS online hydraulic modelling concept used here (section 

3.3) including its three main components: the data assimilation method, the water 

demand forecasting model and the hydraulic model. Three online hydraulic models are 

described in sections 3.4-3.6. They all use the same water demand forecasting model 

(Multi-Linear Regression based, refer to section 3.3.2) and the same hydraulic model 

(Epanet2 based, refer to section 3.3.3). The three online hydraulic models differ in the 
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DA method used. The methods analysed are as follows: (1) Iterative KF method, (2) 

Perturbed EnKF method and (3) PF-SUR method.  

 

The iterative KF method works in a loop iteration to overcome its key limitation to work 

in a non-linear system like the WDS. The EnKF method employs a perturbation method 

variant to estimate the optimal WDS states. The PF method is combined with a 

Stochastic Universal Re-sampling (SUR) method to overcome PF degeneracy and 

output optimal WDS states. All three DA methods shown are capable of processing 

data in near real time and are capable of dealing with WDS model non-linearity (Hutton, 

et al., 2012).  

 

At the end, in section 3.7, two metrics that will be used for comparison analysis 

between offline and online hydraulic models are defined as follows: MAE and 

coefficient of determination, R2.  

 

The results of comparison of offline and three online hydraulic modelsô performances 

are shown in the next chapter.  
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4 CASE STUDY FOR DATA ASSIMILATION METHODOLOGY 

4.1 INTRODUCTION 

 

The application of the offline model and online hydraulic models presented in Chapter 

3 are illustrated in this chapter. The chapter compares and evaluates the performance 

of offline and online hydraulic models in a real-life Water Supply Zone (WSZ) model 

and data. The WSZ in question is divided into several District Metered Areas (DMAs). 

The historical data used are obtained from the United Utilities (UU) flow and pressure 

meters deployed in the WSZ. These historic data were stored in the UU database for 

DMA data record. The availability of real-life flow and pressure data in sufficient 

quantity was limited in each DMA. This prevented the online hydraulic models being 

demonstrated on multiple flow and pressure data within a DMA. However, the obtained 

historic flow and pressure measurements are sufficient to make comparisons between 

the developed offline/online hydraulic models.  

 

The chapter is organised as follows. After this introduction,  

ǒ Section 4.2 describes the case study area used in this thesis;  

ǒ Section 4.3 outlines the hydraulic sensor or   meter data used for the case 

study; 

ǒ Section 4.4 describes how the offline hydraulic modelling work; 

ǒ Section 4.5 explains and defines parameters value for the online hydraulic 

model; 

ǒ Section 4.6 discusses the case study results; 

ǒ Section 4.7 summaries the report and provides the concluding remarks. 

 

4.2 CASE STUDY AREA DESCRIPTION  

 

The online and offline hydraulic models are tested on a real network which is renamed 

for confidentiality reasons as WSZ01. It supplies water to approximately 16,000 

customers under gravity from a tank with an average daily demand of 124 l/s. The 

WSZ01 model consists of 1 tank, 3287 nodes, 2595 pipes and 907 valves. There are 

8 DMAs and all the DMAs have 1 inlet flow meter and 1 outlet flow meter except DMA02 

which has 2 inlet flow meters. Figure 4.1 shows WSZ01 model without DMA03, DMA05 
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and DMA08. The reasons for excluding three DMAs will be explained later in this 

thesis. The hydraulic model displayed in Figure 4.1 will be referred as reduced WSZ01 

from henceforth.   

 

Figure 4.1: Reduced WSZ01 model with flow meter (blue dot) and pressure 

meter (red square) locations 

 

Table 4.1 shows the proportion of water users in all the 8 DMAs. DMA01 and DMA05 

have a large proportion of industrial users compared to other DMAs. This is because 

DMA01 industrial users include a large retail park, two large pharmaceutical 

companies and a local airport. The industrial user in DMA05 is a Wastewater 

Treatment Works (WwTW).  

 

Table 4.1: The percentage of demand in each DMA 

Type of User DMA01 DMA02 DMA04 DMA06 DMA07 

Domestic Users 61% 93% 96% 95% 92% 

industrial Users 39% 7% 4% 5% 8% 

Average DMA daily 

demand (l/s) 

25.87 18.42 8.62 12.07 8.81 
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For the purpose of analyses conducted in this Chapter, 5 DMAs (DMA01, DMA02, 

DMA04, DMA06 and DMA07) are selected and respective hydraulic models are 

extracted from the WSZ01. This is because both flow and pressure data are sufficient 

for data analysis and their respective model were last calibrated in 2013. All the 5 

DMAs are not a pressured managed DMA. The pressured managed DMAs (DMA03, 

DMA05 and DMA08) are excluded for further analysis. This is because some of 

pressure data are missing and other pressure data are nearly flat-lining especially 

between 00:00 and 05:00 (using the 24-hour clock). The three pressure managed 

DMAsô model have control rules to fix the pressure data between 23:00 and 06:00. 

Therefore, the flat-lining DMA pressure data of the three pressured managed DMAs is 

not sensitive to their respective DMA demand diurnal cycle. 

 

4.3 SENSOR DATA 

 

In this case study, there is a total of 14 flow meters, 1 tank level meter and 5 pressure 

meters available.  

 

DMA01 has 5 flow meters and 1 pressure meter. One of the four flow meters is located 

at the inlet of DMA01 to monitor flow entering DMA01. Whilst the other 3 flow meters 

are used to monitor amount of water going to 3 industrial users within DMA01. The 3 

industrial users in DMA01 are a local airport and 2 pharmaceutical companies. 

 

DMA02 has 2 inlet flow meters, 1 outlet flow meter and a pressure meter. The pressure 

meter is located at the highest point in DMA02. The DMA02 outlet flow meter is the 

same as DMA03 inlet flow meter. 

 

DMA04 has 1 inlet flow meter and 2 outlet flow meters and a pressure meter. The 

pressure meter is located at the highest point in DMA04. The 2 outlet flow meters are 

the DMA05 and DMA06 inlet flow meter. 

 

DMA06 has 1 inlet flow meter and 1 outlet flow meter (to DMA07) along with 1 pressure 

meter. The pressure meter is located at the highest point in DMA06. 
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DMA07 has 1 inlet flow meters, 1 outlet flow meter and 1 pressure meter. The pressure 

meter is located at the highest point in DMA07. The DMA07 outlet flow meter is the 

same as DMA08 inlet flow meter. 

 

A flow meter is installed at the WSZ01 tank level inlet to observe the tank inflow and a 

tank level meter is used to observe the water level within the storage tank. The 

pressure data are gathered at the highest point (elevation) of each DMA respectively 

(refer to Figure 4.1). The flow and pressure data are gathered between 1st February 

2015 and 31st May 2015 (17 weeks).  

 

The next section discusses offline hydraulic modelling and the reduced WSZ01 

network model calibration. 

 

4.4 OFFLINE HYDRAULIC MODELLING 

 

The aim of offline calibration of the reduced WSZ01 hydraulic model is to modify or 

adjust model parameters so that model outputs (tank level, flow and pressure) reflect 

WDS observations. Figure 4.2 shows the processes of the model calibration process. 

The model calibration process involves trial and error method where different sets of 

model parameters are used until the model predictions match the corresponding WDS 

observations.  

 

  

Figure 4.2: Model Calibration Process  
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The hydraulic data used for the offline calibration are from the DMA boundary flow 

meters, pressure meters and WSZ01 tank level recorder between 1st and 14th February 

2015. The observed data from DMA01 inflow meter, 3 industrial flow meters and 

DMA01 pressure meter are used to calibrate DMA01 model. DMA02 model is 

calibrated by using observed data from DMA02 and DMA03 inflow meters and DMA02 

pressure meter. DMA04 inflow meter and 2 DMA04 outflow meters (DMA05 and 

DMA06 flow meter) and DMA04 pressure meter are used to calibrate DMA04 model. 

DMA06 model is calibrated by using observed flow and pressure data from DMA06 

and DMA07 flow meter and DMA06 pressure meter respectively. DMA07 model is 

calibrated by using observed data from DMA07 and DMA08 flow meter and DMA07 

pressure meter. 

 

The hydraulic model calibration (refer to Appendix A3) parameters adjusted using the 

trial and error technique are as follows:  

ǒ the roughness value of the cast iron and ductile iron pipes was increased 

by 15%; 

o i.e., 2.5mm to 2.8mm, 3mm to 3.4m, 4mm to 4.5mm 

The roughness value of iron pipes was increased to increase the headloss across the 

reduced WSZ01 network. 

ǒ the relative opening (i.e. tau value) of the Throttle Control Valve (TCV) 

located at the DMA inlet was increased; 

o DMA01 TCV setting value from 75 to 110 

o DMA02_2 TCV setting value from 27 to 41 

o DMA06 TCV setting value from 2.5 to 7.5 

o DMA07 TCV setting value from 62 to 80 

ǒ Due to the difficulty of finding the roughness value of plastic pipes across 

the reduced WSZ01 network, TCV setting value of DMA01, 02_2 06 and 

07 was increased to reduce the pressure head at their respective DMA 

inlet. The demand coefficients at 15 minutes intervals were modified so 

that predicted flow rates match the inlet flow rates. Hence all the DMAsô 

demand coefficients were changed. 
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All the above-mentioned modifications were made to ensure that the predicted 

flow/pressure data from the hydraulic model closely match the observed flow/pressure 

data. 

 

The DMA demand coefficients is the difference between the DMA inflow and outflow 

data divided by the total number of properties within the studied DMA. The total number 

of properties includes small industrial users such as small corner shops and small 

offices. These small industrial users are unmetered and assumed to have similar 

domestic demand profile for the model simplification.   

 

The hydraulic model calibration parameters that were remain unchanged were plastic 

pipesô roughness; DMA04 and DMA02_1 TCV setting value (0); and the base demand. 

During the reduced WSZ01 modelsô calibration, the roughness value of plastic pipes 

was increased whilst the iron pipesô roughness remains unchanged. The results show 

increment of plastic pipesô roughness value do not have significant impact on the 

predicted pressure after several trials. Therefore, the roughness of plastic pipes was 

reversed to their original value.  As for the base demand, UU usually use information 

from billing database and MapInfo or ArcGIS 10.1 to estimate nodal base demand. 

These databases were not available for this research due to confidential protection of 

billing information and ArcGIS data. 

 

The flow and pressure observations between 15th and 28th February 2015 are used to 

validate the hydraulic model calibration. Table 4.2 shows the data statistics for the 

reduced WSZ01 flow calibration and validation. Table 4.2 reveals a big difference 

between pre-calibrated flow data and observed flow between 1st and 14th February 

2015. The results in Table 4.2 show the importance of calibrating the reduced WSZ01 

hydraulic model.   

 

As it can be seen from Table 4.2, the data statistics indicate the modelled 

(calibrated/validated) flow values of DMA01, DMA04, DMA06 and DMA07 match their 

respective flow observations. DMA02_1 and DMA02_2 model flow predictions also 

match the observed flow compared to the pre-calibration flow data. 
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 Table 4.2: Data Statistics for the reduced WSZ01 flow calibration and validation 

 Flow Data Statistics 

Data 

Statistics 

Flow meter 
DMA 

01 

DMA 

02_1 

DMA 

02_2 

DMA 

04 

DMA 

06 

DMA 

07 

Model index 
00172C

37 

X192030

8_ 

03EA86B

D 

000D63

F7 

0016BB

F0 

02B2B7

48 

MAE (l/s) 

Pre-Calibration* 11.253 3.292 3.960 6.624 5.228 2.807 

Calibration 0.001 0.220 0.234 0.001 0.001 0.001 

Validation 0.001 0.249 0.324 0.001 0.001 0.001 

RMSE 

(l/s) 

Pre-calibration* 15.622 4.306 4.313 8.557 7.166 3.717 

Calibration 0.001 0.466 0.489 0.001 0.001 0.001 

Validation 0.001 0.374 0.433 0.001 0.001 0.001 

*Pre-calibration is the previous model calibration before the new calibrated model. In 

the case of the reduced WDSZ01, it was last calibrated in late 2008. 

  

Table 4.3 shows the data statistics for the reduced WSZ01 pressure 

calibration/validation. The pressure data statistics shows the reduced WSZ01 model 

pressure predictions improved after model calibration.    

 

Table 4.3: Data Statistics for the reduced WSZ01 pressure calibration and validation 

 Pressure Data Statistics 

Data 

Statistics 

Pressure 

meter 

WSZ 

01 

DMA 

01 

DMA 

02 

DMA 

04 

DMA 

06 

DMA 

07 

Model index 

00172C

CC_ 

00172D

7A 

03E1B5

A1 

X19204

07_ 

A0020

A71 

A01E11

3A 

MAE (m) 

Pre-

calibration 0.12 0.85 1.18 0.40 1.54 1.22 

Calibration 0.07 0.35 0.30 0.27 0.93 0.65 

Validation 0.04 0.49 0.53 0.36 1.10 0.58 

RMSE (m) 

Pre-

calibration 0.15 1.24 1.51 0.48 1.89 1.75 

Calibration 0.08 0.42 0.38 0.35 1.20 1.04 

Validation 0.05 0.65 0.72 0.42 1.20 0.74 
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Figure 4.3 to Figure 4.8 show the calibration plot of some DMA flows and pressures 

between 1st and 7th February 2015. Figure 4.3, Figure 4.5 and Figure 4.7 show the flow 

comparison between pre-calibration and calibration and observation for DMA01, 

DMA02 and DMA03 respectively. Figure 4.4, Figure 4.6 and Figure 4.8 show the 

pressure comparison between pre-calibration and calibration and observation for 

DMA01, DMA02 and DMA03 respectively. 

 

Figure 4.9 to Figure 4.14 show the validation plot of some DMA flow and pressure 

between 15th and 21st February 2015. Figure 4.9, Figure 4.11 and Figure 4.13 show 

the flow comparison between pre-calibration and calibration and observation for 

DMA01, DMA02 and DMA03 respectively. Figure 4.10, Figure 4.12 and Figure 4.14 

show the pressure comparison between pre-calibration and calibration and 

observation for DMA01, DMA02 and DMA03 respectively. 

 

In Figure 4.3 and Figure 4.9, there are sudden flow spikes (sudden increase) in DMA01 

due to water intake at the airport and two pharmaceutical companies. These flow 

spikes caused DMA01ôs sudden pressure drops in Figure 4.4 and Figure 4.10. Figure 

4.5 show a normal diurnal flow profile for DMA02 but the pressure profile in Figure 4.6 

do not reflect the normal conditions of DMA02 .This is because the DMA02 pressure 

profile is affected by the upstream pressure profile (DMA01) in Figure 4.4.  
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Figure 4.3: Calibration plot of DMA01 hydraulic model for flow between 1st and 7th February 2015 
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Figure 4.4: Calibration plot of DMA01 hydraulic model for pressure between 1st and 7th February 2015 
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Figure 4.5: Calibration plot of DMA02 hydraulic model for flow between 1st and 7th February 2015 
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Figure 4.6: Calibration plot of DMA02 hydraulic model for pressure between 1st and 7th February 2015 
































































































































































































































































































