Algae Reactors for Wastewater Treatment

Rachel Whitton
r.whitton@cranfield.ac.uk

www.cranfield.ac.uk
Wastewater treatment: nutrient removal is ok to current standards

Coagulant
Influent
Primary sedimentation
Waste sludge
Return activated sludge
Secondary sedimentation
Waste sludge

Anaerobic
Influent
Aeration
Clarifier
Return activated sludge

Phosphorus
\[1 \text{ mg.L}^{-1}\]
Need additional stage to reach tighter consents. Is this a role for algae?
Which type of reactor should we use?

- High rate algal pond
- Photobioreactor
- Immobilisation
- Attached
Need appropriate HRT & footprint

Within viable range

Ponds and biofilm systems long retention times
What is immobilisation?

- Concentrates biomass
- Reduced footprint
- Easy removal – gravity settlement post-treatment
Methodology

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells.bead(^{-1})</td>
<td>(10^5) (Hameed et al., 2007)</td>
</tr>
<tr>
<td>Beads.mL(^{-1})</td>
<td>10 (Hameed et al., 2007)</td>
</tr>
<tr>
<td>Temperature</td>
<td>20°C</td>
</tr>
<tr>
<td>Microalgal species</td>
<td>Scenedesmus obliquus</td>
</tr>
<tr>
<td>Resin & curing solution</td>
<td>2% Na-alginate and 2% CaCl(_2)</td>
</tr>
<tr>
<td>Light – wavelength & intensity</td>
<td>200 μmol.m(^{-2}).s(^{-1}), white light</td>
</tr>
<tr>
<td>HRT</td>
<td>3, 6, 12 and 20 hours</td>
</tr>
</tbody>
</table>

Performance analysed for three wastewaters.
How did it perform?

20 h

0.03 mg.L⁻¹

Concentration (mg.L⁻¹)

Time (days)

Dissolved PO₄³⁻ (mg.L⁻¹) Total PO₄³⁻ (mg.L⁻¹) Dissolved TP (mg.L⁻¹) Total TP (mg.L⁻¹) pH
How did it perform?

20 h
0.03 mg.L$^{-1}$

12 h
0.17 mg.L$^{-1}$

6 h
0.10 mg.L$^{-1}$

3 h
0.43 mg.L$^{-1}$
And works for ammonium too.

Average residual concentrations after treatment

Suitable for poor performing N sites too!
IBR design parameters beginning to be understood

Performance

Uptake rate of beads – reactor sizing

Bead life and replacement

Trade off between cost and performance

Inform pilot scale trials
IBR performance when scaled up

Packed bed

Fluidised bed

<0.2 mg.L\(^{-1}\)
Is an IBR a viable option for nutrient polishing?

<table>
<thead>
<tr>
<th>Option</th>
<th>NPC (£k)</th>
<th>Risk reduction (DR)</th>
<th>Risk Index (NPC/dR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Fe dosing</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
</tr>
<tr>
<td>Sand filter and Fe dosing</td>
<td>--</td>
<td>--</td>
<td>11.6</td>
</tr>
<tr>
<td>FBBR IBR + AD (thermal pre-treatment)</td>
<td>--</td>
<td>--</td>
<td>11.6</td>
</tr>
<tr>
<td>PB IBR + AD (thermal pre-treatment)</td>
<td>--</td>
<td>--</td>
<td>11.0</td>
</tr>
</tbody>
</table>

RI <4 = a really good option, 4 – 8 = a good option, >8 = an option that is not as good value for money
Is an IBR a viable option for nutrient polishing?

Further development of an IBR

- Currently over performing, adjust OPEX for savings
- 10 beads.mL$^{-1}$ to 8 beads.mL$^{-1}$
- Light regime 24 h.d$^{-1}$ to 12 h.d$^{-1}$
- Extension of bead life

RI <4 = a really good option, 4 – 8 = a good option, >8 = an option that is not as good value for money

<table>
<thead>
<tr>
<th>Option</th>
<th>NPC (£k)</th>
<th>Risk reduction (DR)</th>
<th>Risk Index (NPC/dR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBBR IBR + AD (thermal pre-treatment)</td>
<td>--</td>
<td>--</td>
<td>7.2</td>
</tr>
<tr>
<td>PB IBR + AD (thermal pre-treatment)</td>
<td>--</td>
<td>--</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Highlights areas for further development
Many thanks

Bruce Jefferson
Raffaella Villa
Francesco Ometto
Marc Pidou

Martina Santinelli
Vaïai Richmond
Marta Gomez San Juan
Amandine Le Mével
Marie Chazaux
Marta Bortolotti
Davide Pierobon