Small leak and burst detection and localisation based

on a data-driven hydraulic modelling framework

Sophocles Sophocleous¹, Dragan Savic¹, Zoran Kapelan¹, Chris Gilbert2, Paul Sage³

¹University of Exeter, ²Severn Trent Water, ³WITS Consult Ltd;

Stream

The Industrial Doctorate Centre for the Water Sector

Question: How can we respond faster to leaks and deliver efficient network operation? Answer: Automated detection and location based on hydraulic models

Introduction and Aims

Leak losses of up to 30% of input waste water, energy, and add to treatment costs.

Traditionally a leak is repaired only when it becomes visible. Thus, it is important to develop methods that

Data Collection Strategy

Pressure sensors are installed at various parts of the DMA recording pressure variations.

Engineered events are introduced to simulate bursts and/or leaks, closed/open valves, or incorrectly calibrated models.

A leak generates a pressure and flow signature which can be used to automatically detect the leak and narrow down the search area.

Inverse modelling methods reduce the time and leak search area [1]. The problem is difficult to solve [2], due to the coarse calibration accuracy and system/data anomalies [3].

Data from field measurements, major customers and previous events are taken into account along with pipe information.

Inverse modelling for combined leak detection and model calibration

Graph theoretic algorithms are used to explore the network topology and analyse the burst signature within a DMA.

The narrowing down process falsifies infeasible leak scenarios and constrains the search for the leak

Conclusion and Further Work

- The pre-processing method reduce the search for leaks by 80-90%.
 The optimisation analysis detects the state of assets quickly, conveniently and accurately, while calibrating the hydraulic model.
- The developed methodology can improve leak detection and identification, acting as a support tool for network operations and the prioritisation of repairs.
- Next steps will validate the methodology using real field data.

References

- [1] Wu, Z.Y. and Sage, P.V. Water loss detection via Genetic Algorithm Optimisation-based Model Calibration, *American Society of Civil Engineers* (ASCE), 2006
- [2] Savic, DA, Kapelan, ZS, Jonkergouw, PMR. Quo vadis water distribution model calibration? *Urban Water Journal*, 6, 1, 3-22, 2009.
- [3] T. Walski, D. Chase, D. Savic, W. Grayman, S. Beckwith, "Advanced Water Distribution Modeling and Management," Haested Press, 2002.

X

For further information: ss694@exeter.ac.uk